【NLP 9、实践 ① 五维随机向量交叉熵多分类】
目录
五维向量交叉熵多分类
规律:
实现:
1.设计模型
2.生成数据集
3.模型测试
4.模型训练
5.对训练的模型进行验证
调用模型
你的平静,是你最强的力量
—— 24.12.6
五维向量交叉熵多分类
规律:
x是一个五维(索引)向量,对x做五分类任务
改用交叉熵实现一个多分类任务,五维随机向量中最大的数字在哪维就属于哪一类
实现:
1.设计模型
Linear():模型函数中定义线性层
activation = nn.Softmax(dim=1):定义激活层为softmax激活函数
nn.CrossEntropyLoss() / nn.functional.cross_entropy:定义交叉熵损失函数
pyTorch中定义的交叉熵损失函数内部封装了softMax函数, 而使用交叉熵必须使用softMax函数,对数据进行归一化
经过 Softmax 归一化后,输出向量的每个元素可以被解释为样本属于相应类别的概率。这使得我们能够直接比较不同类别上的概率大小,并且与真实的类别概率分布(如one-hot编码)进行合理的对比。
例如,在一个三分类问题中,经过 Softmax 后的输出可能是[0.2,0.3,0.5],我们可以直观地说样本属于第三类的概率是 0.5,这是一个符合概率意义的解释
forward函数,前向计算,定义网络的使用方式,声明模型计算过程
# 1.设计模型
class TorchModel(nn.Module):def __init__(self, input_size):super(TorchModel, self).__init__()# 预测出一个五维的向量,五维向量代表五个类别上的概率分布self.linear = nn.Linear(input_size, 5) # 线性层# 类交叉熵写法:CrossEntropyLoss() 函数交叉熵写法:cross_entropy# nn.CrossEntropyLoss() pycharm交叉的熵损失函数内部封装了softMax函数, 而使用交叉熵必须使用softMax函数self.loss = nn.functional.cross_entropy # loss函数采用交叉熵损失self.activation = nn.Softmax(dim=1)# 当输入真实标签,返回loss值;无真实标签,返回预测值def forward(self, x, y=None):# 输入过第一个网络层y_pred = self.linear(x) # (batch_size, input_size) -> (batch_size, 1)if y is not None:return self.loss(y_pred, y) # 预测值和真实值计算损失else:return self.activation(y_pred) # 输出预测结果# return y_pred
2.生成数据集
由于题目要求,要在一个五维随机向量中查找标量最大的数所在维度,所以用np.random函数随机生成一个五维向量,然后通过np.argmax函数找出生成向量中最大标量所对应的维度,并将其作为数据 x 的标注 y 返回
当我们输出一串数字,要告诉模型输出的是一串单独的数而不是一串样本时,需要用到 "[ ]",换句话说当y是单独的一个数(标量)时,才需要加“[ ]”
而该模型输出的预测结果是一个向量,而不是一个数(标量的概率)时,不需要拼在一起
# 2.生成数据集标签label 数据构建
# 生成一个样本, 样本的生成方法,代表了我们要学习的规律,随机生成一个5维向量,如果第一个值大于第五个值,认为是正样本,反之为负样本
def build_sample():x = np.random.random(5)# 获取最大值对应的索引max_index = np.argmax(x)return x, max_index# 随机生成一批样本
# 正负样本均匀生成
def build_dataset(total_sample_num):X = []Y = []# 随机生成样本,total_sample_num 生成的随机样本数for i in range(total_sample_num):x, y = build_sample()X.append(x)# 当我们输出一串数字,要告诉模型输出的是一串单独的数而不是一串样本时,需要用到"[]",换句话说当y是单独得一个数(标量)时,才需要加“[]”# 而该模型输出的预测结果是一个向量,而不是一个数(标量的概率)时,不需要拼在一起Y.append(y)X_array = np.array(X)Y_array = np.array(Y)# 一般torch中的Long整形类型用来判定类型return torch.FloatTensor(X_array), torch.LongTensor(Y_array)
3.模型测试
用来测试每轮模型预测的精确度
model.eval():声明模型框架在这个函数中不做训练
with torch.no_grad():在模型测试的部分中,声明是测试函数,不计算梯度,增加模型训练效率
zip():zip 函数是一个内置函数,用于将多个可迭代对象(如列表、元组、字符串等)中对应的元素打包成一个个元组,然后返回由这些元组组成的可迭代对象(通常是一个 zip 对象)。如果各个可迭代对象的长度不一致,那么 zip 操作会以最短的可迭代对象长度为准。
# 3.模型测试
# 用来测试每轮模型的准确率
def evaluate(model):model.eval()test_sample_num = 100x, y = build_dataset(test_sample_num)print("本次预测集中共有%d个正样本,%d个负样本" % (sum(y), test_sample_num - sum(y)))correct, wrong = 0, 0with torch.no_grad():y_pred = model(x) # 模型预测 model.forward(x)for y_p, y_t in zip(y_pred, y): # 与真实标签进行对比# np.argmax是求最大数所在维,max求最大数,torch.argmax是求最大数所在维if torch.argmax(y_p) == int(y_t):correct += 1 # 正确预测加一else:wrong += 1 # 错误预测加一print("正确预测个数:%d, 正确率:%f" % (correct, correct / (correct + wrong)))return correct / (correct + wrong)
4.模型训练
① 配置参数
② 建立模型
③ 选择优化器(Adam)
④ 读取训练集
⑤ 训练过程
Ⅰ、model.train():设置训练模式
Ⅱ、对训练集样本开始循环训练(循环取出训练数据)
Ⅲ、根据模型函数和损失函数的定义计算模型损失
Ⅳ、计算梯度
Ⅴ、通过梯度用优化器更新权重
Ⅵ、计算完一轮训练数据后梯度进行归零,下一轮重新计算
torch.save(model.state_dict(), "model.pt"):将模型保存为model.pt文件
一般任务不同只需更改数据读取(步骤③)和模型构建(步骤①)内容,训练过程一般无需更改,evaluate测试代码可能也需更改,因为不同模型测试正确率的方式不同
# 4.模型训练
def main():# 配置参数epoch_num = 20 # 训练轮数batch_size = 20 # 每次训练样本个数train_sample = 5000 # 每轮训练总共训练的样本总数input_size = 5 # 输入向量维度learning_rate = 0.001 # 学习率# ① 建立模型model = TorchModel(input_size)# ② 选择优化器optim = torch.optim.Adam(model.parameters(), lr=learning_rate)log = []# ③ 创建训练集,正常任务是读取训练集train_x, train_y = build_dataset(train_sample)# 训练过程# 轮数进行自定义for epoch in range(epoch_num):model.train()watch_loss = []# ④ 读取数据集for batch_index in range(train_sample // batch_size):x = train_x[batch_index * batch_size : (batch_index + 1) * batch_size]y = train_y[batch_index * batch_size : (batch_index + 1) * batch_size]# ⑤ 计算lossloss = model(x, y) # 计算loss model.forward(x,y)# ⑥ 计算梯度loss.backward() # 计算梯度# ⑦ 权重更新optim.step() # 更新权重# ⑧ 梯度归零optim.zero_grad() # 梯度归零watch_loss.append(loss.item())# 一般任务不同只需更改数据读取(步骤③)和模型构建(步骤①)内容,训练过程一般无需更改,evaluate测试代码可能也需更改,因为不同模型测试正确率的方式不同print("=========\n第%d轮平均loss:%f" % (epoch + 1, np.mean(watch_loss)))acc = evaluate(model) # 测试本轮模型结果log.append([acc, float(np.mean(watch_loss))])# 保存模型torch.save(model.state_dict(), "model.pt")# 画图print(log)plt.plot(range(len(log)), [l[0] for l in log], label="acc") # 画acc曲线plt.plot(range(len(log)), [l[1] for l in log], label="loss") # 画loss曲线plt.legend()plt.show()return
5.对训练的模型进行验证
调用main函数
if __name__ == "__main__":main()


调用模型
model.eval():声明模型框架在这个函数中不做训练
predict("model.pt", test_vec):调用模型存储的文件model.pt,通过调用模型对数据进行预测
# 使用训练好的模型做预测
def predict(model_path, input_vec):input_size = 5model = TorchModel(input_size)# 加载训练好的权重model.load_state_dict(torch.load(model_path, weights_only=True))# print(model.state_dict())model.eval() # 测试模式,不计算梯度with torch.no_grad():# 输入一个真实向量转成Tensor,让模型forward一下result = model.forward(torch.FloatTensor(input_vec)) # 模型预测for vec, res in zip(input_vec, result):# python中,round函数是对浮点数进行四舍五入print("输入:%s, 预测类别:%s, 概率值:%s" % (vec, torch.argmax(res), res)) # 打印结果if __name__ == "__main__":test_vec = [[0.97889086,0.15229675,0.31082123,0.03504317,0.88920843],[0.74963533,0.5524256,0.95758807,0.95520434,0.84890681],[0.00797868,0.67482528,0.13625847,0.34675372,0.19871392],[0.09349776,0.59416669,0.92579291,0.41567412,0.1358894]]predict("model.pt", test_vec)

相关文章:
【NLP 9、实践 ① 五维随机向量交叉熵多分类】
目录 五维向量交叉熵多分类 规律: 实现: 1.设计模型 2.生成数据集 3.模型测试 4.模型训练 5.对训练的模型进行验证 调用模型 你的平静,是你最强的力量 —— 24.12.6 五维向量交叉熵多分类 规律: x是一个五维(索引)向量ÿ…...
信息系统安全防护攻防对抗式实验教学解决方案
一、引言 在网络和信息技术迅猛发展的今天,信息系统已成为社会各领域的关键基础设施,它支撑着电子政务、电子商务、科学研究、能源、交通和社会保障等多个方面。然而,信息系统也面临着日益严峻的网络安全威胁,网络攻击手段层出不…...
【笔记2-4】ESP32:freertos任务创建
主要参考b站宸芯IOT老师的视频,记录自己的笔记,老师讲的主要是linux环境,但配置过程实在太多问题,就直接用windows环境了,老师也有讲一些windows的操作,只要代码会写,操作都还好,开发…...
2024年12月6日Github流行趋势
项目名称:lobe-chat 项目维护者:arvinxx, semantic-release-bot, canisminor1990, lobehubbot, renovate项目介绍:一个开源的现代化设计的人工智能聊天框架。支持多AI供应商(OpenAI / Claude 3 / Gemini / Ollama / Qwen / DeepSe…...
matlab读取NetCDF文件
matlab对NetCDF文件进行信息获取和读取数据 文章目录 前言一、什么是NetCDF文件二、读取NetCDF文件数据 1.引入库 2.读入数据总结 前言 在气象学中,许多气象数据存储在NetCDF文件中,后缀为.nc,通常可以用NCL、python和MATLAB等对该…...
RDMA驱动学习(三)- cq的创建
用户通过ibv_create_cq接口创建完成队列,函数原型和常见用法如下,本节以该用法为例看下cq的创建过程。 struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe,void *cq_context,struct ibv_comp_channel *channel,int comp_vector); cq …...
Flask使用Celery与多进程管理:优雅处理长时间任务与子进程终止技巧(multiprocessing)(subprocess)
在许多任务处理系统中,我们需要使用异步任务队列来处理繁重的计算或长时间运行的任务,如模型训练。Celery是一个广泛使用的分布式任务队列,而在某些任务中,尤其是涉及到调用独立脚本的场景中,我们需要混合使用multipro…...
Django模板系统
1.常用语法 Django模板中只需要记两种特殊符号: {{ }}和 {% %} {{ }}表示变量,在模板渲染的时候替换成值,{% %}表示逻辑相关的操作。 2.变量 {{ 变量名 }} 变量名由字母数字和下划线组成。 点(.)在模板语言中有…...
15. 文件操作
一、什么是文件 文件(file)通常是磁盘或固态硬盘上的一段已命名的存储区。它是指一组相关数据的有序集合。这个数据集合有一个名称,叫做文件名。文件名 是文件的唯一标识,以便用户识别和引用。文件名包括 3 个部分:文件…...
清风数学建模学习笔记——Topsis法
数模评价类(2)——Topsis法 概述 Topsis:Technique for Order Preference by Similarity to Ideal Solution 也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个…...
组合总和习题分析
习题:(leetcode39) 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 c…...
基于eFramework车控车设中间件介绍
车设的发展,起源于汽车工业萌芽之初,经历了机械式操作的原始粗犷,到电子式调控技术的巨大飞跃,到如今智能化座舱普及,远程车控已然成为汽车标配,车设功能选项也呈现出爆发式增长,渐趋多元繁杂。…...
L17.【LeetCode笔记】另一棵树的子树
目录 1.题目 代码模板 2.分析 3.代码 4.提交结果 1.题目 https://leetcode.cn/problems/subtree-of-another-tree/description/ 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ÿ…...
BGP通过route-policy路由策略调用ip-prefix网络前缀实现负载均衡与可靠性之AS-path属性
一、实验场景 1、loopback0与loopback1模拟企业实际环境中的某个网段。 2、本例目标总公司AR3的1.1.1.1/32网段到分公司AR4的3.3.3.3/32的流量从上方的AS500自治系统走。 3、本例目标总公司AR3的4.4.4.4/32网段到分公司AR4的2.2.2.2/32的流量从下面的AS300、AS400自治系统走。…...
每日速记10道java面试题14-MySQL篇
其他资料 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 每日速记10道java面试题07-CSDN博客 每…...
内存图及其画法
所有的文件都存在硬盘上,首次使用的时候才会进入内存 进程:有自己的Main方法,并且依赖自己Main运行起来的程序。独占一块内存区域,互不干扰。内存中有一个一个的进程。 操作系统只认识c语言。操作系统调度驱动管理硬件࿰…...
Ansys Maxwell:Qi 无线充电组件
Qi 无线充电采用感应充电技术,无需物理连接器或电缆,即可将电力从充电站传输到兼容设备。由 WPC 管理的 Qi 标准确保了不同无线充电产品之间的互操作性。以下是 Qi v1.3 标准的核心功能: Qi v1.3 标准的主要特点 身份验证:确保充…...
【Shell 脚本实现 HTTP 请求的接收、解析、处理逻辑】
以下是一个实现客户端对 Shell HTTP 服务发起 POST 请求并传入 JSON 参数的完整示例。Shell 服务会解析收到的 JSON 数据,根据内容执行操作。 服务端脚本:http_server.sh 以下脚本使用 netcat (nc) 来监听 HTTP 请求,并通过 jq 工具解析 JSO…...
【北京迅为】iTOP-4412全能版使用手册-第六十七章 USB鼠标驱动详解
iTOP-4412全能版采用四核Cortex-A9,主频为1.4GHz-1.6GHz,配备S5M8767 电源管理,集成USB HUB,选用高品质板对板连接器稳定可靠,大厂生产,做工精良。接口一应俱全,开发更简单,搭载全网通4G、支持WIFI、蓝牙、…...
【青牛科技】拥有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作——D4558
概述: D4558内部包括有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作。该电路具有电压增益高、噪声低等特点。主要应用于音频信号放大,有源滤波器等场合。 D4558采用DIP8、SOP8的封装形式 主要特点ÿ…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
