清风数学建模学习笔记——Topsis法
数模评价类(2)——Topsis法
概述
Topsis:Technique for Order Preference by Similarity to Ideal Solution
也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个方案的优劣。
案例
已知下列20条河流几项指标数据,指标有含氧量、PH值、细菌总数、植物性营养物量,试对20条河流的水质进行评价和排序。
思考:适不适合使用层次分析法进行评价?
答:不适合。原因:1、决策层的方案数为20>15,很难构造通过一致性检验的判断矩阵,并且一致性检验中RI可查的最大n为15;2、若使用层次分析法,没有充分利用已知方案各向指标数据进行评价。
数据集基本概念:
如案例中所给数据表格构成一个典型的数据集,每一行代表一个记录/数据项/对象,
第一列构成索引列(index),除每一列外每一列代表一个指标/特征
Topsis步骤
Step1:正向化处理
指标分类:
在该案例中,极大型:含氧量,极小型:细菌含量,中间型:PH值,区间型:营养量
正向化处理即将所有指标转化为极大型指标
符号说明:x代表数据集中对应特征的一列, x i x_i xi表示该列第i行元素
极小型->极大型
x i ^ = m a x { x } − x i \hat{x_{i}}=max\{x\}-x_{i}\\ xi^=max{x}−xi
如果所有元素为正数,可取倒数实现正向化
中间型->极大型
x i ^ = 1 − x i − x b e s t m a x { x i − x b e s t } \hat{x_i}=1-\frac{x_i-x_{best}}{max\{x_i-x_{best}\}} xi^=1−max{xi−xbest}xi−xbest
注:这种正向化处理将数据值映射到[0,1],数据越趋近中间理想值,映射值越趋近于1
区间型->极大型
注:区间型指标正向化需考虑左右两侧,类似中间型指标的正向化方法,当两侧值越趋近理想趋近边界值时,映射值越趋近于1
Step2:正向化矩阵标准化
标准化处理是矩阵预处理中基础性的步骤,其目的是消除不同指标量纲的影响,这里采用向量归一化(也称为L2正则化,即将每一列向量转化为单位特征列向量)
Step3:计算得分并归一化
Topsis优劣解的核心思想就是先确定两个正(负)理想的数据向量,然后将每个对象数据向量对其评分。由于我们已经将所有指标正向化,因此抽出每一列的最大值构成最大值向量 Z + Z_{+} Z+,抽出每一列的最小值构成最小值向量 Z − Z_{-} Z−,对于每个评价对象数据向量 Z i Z_i Zi,我们可以用向量距离公式计算 Z i Z_i Zi与 Z + Z_{+} Z+和 Z − Z_{-} Z−的距离 D i + 和 D i − D_i^{+}和D_i^{-} Di+和Di−,然后得到每个对象未归一化的评分
S i = D i − D i − + D i + S_i=\frac{D_i^{-}}{D_i^{-}+D_i^{+}} Si=Di−+Di+Di−
归一化后就得到各对象最终评分
考虑指标权重系数,对算法进行修改
权重系数可由构造判断矩阵法得到,也可以由熵权法【后续讨论】得到
运行python代码结果:
简要分析结果可知I、J、K河流水质最好,N河流水质明显最差
相关文章:

清风数学建模学习笔记——Topsis法
数模评价类(2)——Topsis法 概述 Topsis:Technique for Order Preference by Similarity to Ideal Solution 也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个…...
组合总和习题分析
习题:(leetcode39) 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 c…...

基于eFramework车控车设中间件介绍
车设的发展,起源于汽车工业萌芽之初,经历了机械式操作的原始粗犷,到电子式调控技术的巨大飞跃,到如今智能化座舱普及,远程车控已然成为汽车标配,车设功能选项也呈现出爆发式增长,渐趋多元繁杂。…...

L17.【LeetCode笔记】另一棵树的子树
目录 1.题目 代码模板 2.分析 3.代码 4.提交结果 1.题目 https://leetcode.cn/problems/subtree-of-another-tree/description/ 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ÿ…...

BGP通过route-policy路由策略调用ip-prefix网络前缀实现负载均衡与可靠性之AS-path属性
一、实验场景 1、loopback0与loopback1模拟企业实际环境中的某个网段。 2、本例目标总公司AR3的1.1.1.1/32网段到分公司AR4的3.3.3.3/32的流量从上方的AS500自治系统走。 3、本例目标总公司AR3的4.4.4.4/32网段到分公司AR4的2.2.2.2/32的流量从下面的AS300、AS400自治系统走。…...
每日速记10道java面试题14-MySQL篇
其他资料 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 每日速记10道java面试题07-CSDN博客 每…...

内存图及其画法
所有的文件都存在硬盘上,首次使用的时候才会进入内存 进程:有自己的Main方法,并且依赖自己Main运行起来的程序。独占一块内存区域,互不干扰。内存中有一个一个的进程。 操作系统只认识c语言。操作系统调度驱动管理硬件࿰…...

Ansys Maxwell:Qi 无线充电组件
Qi 无线充电采用感应充电技术,无需物理连接器或电缆,即可将电力从充电站传输到兼容设备。由 WPC 管理的 Qi 标准确保了不同无线充电产品之间的互操作性。以下是 Qi v1.3 标准的核心功能: Qi v1.3 标准的主要特点 身份验证:确保充…...
【Shell 脚本实现 HTTP 请求的接收、解析、处理逻辑】
以下是一个实现客户端对 Shell HTTP 服务发起 POST 请求并传入 JSON 参数的完整示例。Shell 服务会解析收到的 JSON 数据,根据内容执行操作。 服务端脚本:http_server.sh 以下脚本使用 netcat (nc) 来监听 HTTP 请求,并通过 jq 工具解析 JSO…...

【北京迅为】iTOP-4412全能版使用手册-第六十七章 USB鼠标驱动详解
iTOP-4412全能版采用四核Cortex-A9,主频为1.4GHz-1.6GHz,配备S5M8767 电源管理,集成USB HUB,选用高品质板对板连接器稳定可靠,大厂生产,做工精良。接口一应俱全,开发更简单,搭载全网通4G、支持WIFI、蓝牙、…...

【青牛科技】拥有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作——D4558
概述: D4558内部包括有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作。该电路具有电压增益高、噪声低等特点。主要应用于音频信号放大,有源滤波器等场合。 D4558采用DIP8、SOP8的封装形式 主要特点ÿ…...
Kafka 数据写入问题
目录标题 分析思路1. **生产者配置问题**:Kafka生产者的配置参数生产者和消费者的处理确定并优化 2. **网络问题**:3. **Kafka 集群配置问题**:unclean.leader.election.enable 4. **Zookeeper 配置问题**:5. **JVM 参数调优**&am…...
实战ansible-playbook(九)-profile配置- 确保 CUDA 和 MPI 环境变量正确设置并立即生效
Playbook 分析 --- - name: 确保 CUDA 和 MPI 环境变量正确设置并立即生效hosts: pod2 # 指定目标主机组或具体主机名become: yes # 使用特权提升(sudo),以root权限执行某些需要权限的任务remote_user: canopy # 远程连接使用的用户名vars: # 定义全局变量,用于Playbo…...

气膜馆:科技与环保融合的未来建筑新选择—轻空间
在全球城市化进程不断加快的背景下,传统建筑方式面临着越来越多的挑战。如何在有限的土地和资源条件下,快速、高效、环保地搭建符合多功能需求的建筑,成为现代建筑行业亟待解决的重要课题。而随着科技的进步与建筑材料的创新,一种…...

git回退到某个版本git checkout和git reset命令的区别
文章目录 1. git checkout <commit>2. git reset --hard <commit>两者的区别总结推荐使用场景* 在使用 Git 回退到某个版本时, git checkout <commit> 和 git reset --hard <commit> 是两种常见的方式,但它们的用途和影响有很…...
Preprocess
Preprocess数据预处理 文本 使用Tokenizer将文本转换为标记序列,创建标记的数值表示,并将它们组装成张量。 预处理文本数据的主要工具是标记器。标记器根据一组规则将文本拆分为标记。标记被转换为数字,然后转换为张量,这些张量…...

stm32 spi接口传输asm330l速率优化(及cpu和dma方式对比)
最近一段时间做了一个mems的项目,项目的方案是stm32g071做主控,读写3颗asm330l的硬件形态。最初是想放置4颗imu芯片,因为pcb空间布局的问题,改放了3颗。但对于软件方案来说无所谓,关键是如何优化spi的传输速率…...

数字时代的文化宝库:存储技术与精神生活
文章目录 1. 文学经典的数字传承2. 音乐的无限可能3. 影视艺术的数字化存储4. 结语 数字时代的文化宝库:存储技术与精神生活 在数字化的浪潮中,存储技术如同一座桥梁,连接着过去与未来,承载着人类文明的瑰宝。随着存储容量的不断增…...

flex: 1 display:flex 导致的宽度失效问题
flex: 1 & display:flex 导致的宽度失效问题 问题复现 有这样的一个业务场景,详情项每行三项分别占33%宽度,每项有label字数不固定所以宽度不固定,还有content 占满标签剩余宽度,文字过多显示省略号, 鼠标划入展示…...
Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度
Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度 在当今大数据蓬勃发展的时代,Hive 作为一款强大的数据仓库工具,其窗口函数和分析函数犹如一把把精巧的手术刀,助力数据分析师们精准地剖析海量数据,挖掘出深…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...