当前位置: 首页 > news >正文

清风数学建模学习笔记——Topsis法

数模评价类(2)——Topsis法

概述

Topsis:Technique for Order Preference by Similarity to Ideal Solution

也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个方案的优劣。

案例

已知下列20条河流几项指标数据,指标有含氧量、PH值、细菌总数、植物性营养物量,试对20条河流的水质进行评价和排序。

在这里插入图片描述

思考:适不适合使用层次分析法进行评价?

答:不适合。原因:1、决策层的方案数为20>15,很难构造通过一致性检验的判断矩阵,并且一致性检验中RI可查的最大n为15;2、若使用层次分析法,没有充分利用已知方案各向指标数据进行评价。

数据集基本概念:

如案例中所给数据表格构成一个典型的数据集,每一行代表一个记录/数据项/对象,

第一列构成索引列(index),除每一列外每一列代表一个指标/特征

Topsis步骤

Step1:正向化处理

指标分类:

在这里插入图片描述

在该案例中,极大型:含氧量,极小型:细菌含量,中间型:PH值,区间型:营养量

正向化处理即将所有指标转化为极大型指标

符号说明:x代表数据集中对应特征的一列, x i x_i xi表示该列第i行元素

极小型->极大型
x i ^ = m a x { x } − x i \hat{x_{i}}=max\{x\}-x_{i}\\ xi^=max{x}xi
如果所有元素为正数,可取倒数实现正向化

中间型->极大型
x i ^ = 1 − x i − x b e s t m a x { x i − x b e s t } \hat{x_i}=1-\frac{x_i-x_{best}}{max\{x_i-x_{best}\}} xi^=1max{xixbest}xixbest
在这里插入图片描述

注:这种正向化处理将数据值映射到[0,1],数据越趋近中间理想值,映射值越趋近于1

区间型->极大型

在这里插入图片描述

注:区间型指标正向化需考虑左右两侧,类似中间型指标的正向化方法,当两侧值越趋近理想趋近边界值时,映射值越趋近于1

Step2:正向化矩阵标准化

标准化处理是矩阵预处理中基础性的步骤,其目的是消除不同指标量纲的影响,这里采用向量归一化(也称为L2正则化,即将每一列向量转化为单位特征列向量)

在这里插入图片描述

Step3:计算得分并归一化

Topsis优劣解的核心思想就是先确定两个正(负)理想的数据向量,然后将每个对象数据向量对其评分。由于我们已经将所有指标正向化,因此抽出每一列的最大值构成最大值向量 Z + Z_{+} Z+,抽出每一列的最小值构成最小值向量 Z − Z_{-} Z,对于每个评价对象数据向量 Z i Z_i Zi,我们可以用向量距离公式计算 Z i Z_i Zi Z + Z_{+} Z+ Z − Z_{-} Z​的距离 D i + 和 D i − D_i^{+}和D_i^{-} Di+Di,然后得到每个对象未归一化的评分
S i = D i − D i − + D i + S_i=\frac{D_i^{-}}{D_i^{-}+D_i^{+}} Si=Di+Di+Di
在这里插入图片描述

归一化后就得到各对象最终评分

考虑指标权重系数,对算法进行修改

在这里插入图片描述

权重系数可由构造判断矩阵法得到,也可以由熵权法【后续讨论】得到

运行python代码结果:

在这里插入图片描述

简要分析结果可知I、J、K河流水质最好,N河流水质明显最差

相关文章:

清风数学建模学习笔记——Topsis法

数模评价类(2)——Topsis法 概述 Topsis:Technique for Order Preference by Similarity to Ideal Solution 也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个…...

组合总和习题分析

习题:(leetcode39) 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 c…...

基于eFramework车控车设中间件介绍

车设的发展,起源于汽车工业萌芽之初,经历了机械式操作的原始粗犷,到电子式调控技术的巨大飞跃,到如今智能化座舱普及,远程车控已然成为汽车标配,车设功能选项也呈现出爆发式增长,渐趋多元繁杂。…...

L17.【LeetCode笔记】另一棵树的子树

目录 1.题目 代码模板 2.分析 3.代码 4.提交结果 1.题目 https://leetcode.cn/problems/subtree-of-another-tree/description/ 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true &#xff…...

BGP通过route-policy路由策略调用ip-prefix网络前缀实现负载均衡与可靠性之AS-path属性

一、实验场景 1、loopback0与loopback1模拟企业实际环境中的某个网段。 2、本例目标总公司AR3的1.1.1.1/32网段到分公司AR4的3.3.3.3/32的流量从上方的AS500自治系统走。 3、本例目标总公司AR3的4.4.4.4/32网段到分公司AR4的2.2.2.2/32的流量从下面的AS300、AS400自治系统走。…...

每日速记10道java面试题14-MySQL篇

其他资料 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 每日速记10道java面试题07-CSDN博客 每…...

内存图及其画法

所有的文件都存在硬盘上,首次使用的时候才会进入内存 进程:有自己的Main方法,并且依赖自己Main运行起来的程序。独占一块内存区域,互不干扰。内存中有一个一个的进程。 操作系统只认识c语言。操作系统调度驱动管理硬件&#xff0…...

Ansys Maxwell:Qi 无线充电组件

Qi 无线充电采用感应充电技术,无需物理连接器或电缆,即可将电力从充电站传输到兼容设备。由 WPC 管理的 Qi 标准确保了不同无线充电产品之间的互操作性。以下是 Qi v1.3 标准的核心功能: Qi v1.3 标准的主要特点 身份验证:确保充…...

【Shell 脚本实现 HTTP 请求的接收、解析、处理逻辑】

以下是一个实现客户端对 Shell HTTP 服务发起 POST 请求并传入 JSON 参数的完整示例。Shell 服务会解析收到的 JSON 数据,根据内容执行操作。 服务端脚本:http_server.sh 以下脚本使用 netcat (nc) 来监听 HTTP 请求,并通过 jq 工具解析 JSO…...

【北京迅为】iTOP-4412全能版使用手册-第六十七章 USB鼠标驱动详解

iTOP-4412全能版采用四核Cortex-A9,主频为1.4GHz-1.6GHz,配备S5M8767 电源管理,集成USB HUB,选用高品质板对板连接器稳定可靠,大厂生产,做工精良。接口一应俱全,开发更简单,搭载全网通4G、支持WIFI、蓝牙、…...

【青牛科技】拥有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作——D4558

概述: D4558内部包括有两个独立的、高增益、内部相位补偿的双运算放大器,可适用于单电源或双电源工作。该电路具有电压增益高、噪声低等特点。主要应用于音频信号放大,有源滤波器等场合。 D4558采用DIP8、SOP8的封装形式 主要特点&#xff…...

Kafka 数据写入问题

目录标题 分析思路1. **生产者配置问题**:Kafka生产者的配置参数生产者和消费者的处理确定并优化 2. **网络问题**:3. **Kafka 集群配置问题**:unclean.leader.election.enable 4. **Zookeeper 配置问题**:5. **JVM 参数调优**&am…...

实战ansible-playbook(九)-profile配置- 确保 CUDA 和 MPI 环境变量正确设置并立即生效

Playbook 分析 --- - name: 确保 CUDA 和 MPI 环境变量正确设置并立即生效hosts: pod2 # 指定目标主机组或具体主机名become: yes # 使用特权提升(sudo),以root权限执行某些需要权限的任务remote_user: canopy # 远程连接使用的用户名vars: # 定义全局变量,用于Playbo…...

气膜馆:科技与环保融合的未来建筑新选择—轻空间

在全球城市化进程不断加快的背景下,传统建筑方式面临着越来越多的挑战。如何在有限的土地和资源条件下,快速、高效、环保地搭建符合多功能需求的建筑,成为现代建筑行业亟待解决的重要课题。而随着科技的进步与建筑材料的创新,一种…...

git回退到某个版本git checkout和git reset命令的区别

文章目录 1. git checkout <commit>2. git reset --hard <commit>两者的区别总结推荐使用场景* 在使用 Git 回退到某个版本时&#xff0c; git checkout <commit> 和 git reset --hard <commit> 是两种常见的方式&#xff0c;但它们的用途和影响有很…...

Preprocess

Preprocess数据预处理 文本 使用Tokenizer将文本转换为标记序列&#xff0c;创建标记的数值表示&#xff0c;并将它们组装成张量。 预处理文本数据的主要工具是标记器。标记器根据一组规则将文本拆分为标记。标记被转换为数字&#xff0c;然后转换为张量&#xff0c;这些张量…...

stm32 spi接口传输asm330l速率优化(及cpu和dma方式对比)

最近一段时间做了一个mems的项目&#xff0c;项目的方案是stm32g071做主控&#xff0c;读写3颗asm330l的硬件形态。最初是想放置4颗imu芯片&#xff0c;因为pcb空间布局的问题&#xff0c;改放了3颗。但对于软件方案来说无所谓&#xff0c;关键是如何优化spi的传输速率&#xf…...

数字时代的文化宝库:存储技术与精神生活

文章目录 1. 文学经典的数字传承2. 音乐的无限可能3. 影视艺术的数字化存储4. 结语 数字时代的文化宝库&#xff1a;存储技术与精神生活 在数字化的浪潮中&#xff0c;存储技术如同一座桥梁&#xff0c;连接着过去与未来&#xff0c;承载着人类文明的瑰宝。随着存储容量的不断增…...

flex: 1 display:flex 导致的宽度失效问题

flex: 1 & display:flex 导致的宽度失效问题 问题复现 有这样的一个业务场景&#xff0c;详情项每行三项分别占33%宽度&#xff0c;每项有label字数不固定所以宽度不固定&#xff0c;还有content 占满标签剩余宽度&#xff0c;文字过多显示省略号&#xff0c; 鼠标划入展示…...

Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度

Hive 窗口函数与分析函数深度解析&#xff1a;开启大数据分析的新维度 在当今大数据蓬勃发展的时代&#xff0c;Hive 作为一款强大的数据仓库工具&#xff0c;其窗口函数和分析函数犹如一把把精巧的手术刀&#xff0c;助力数据分析师们精准地剖析海量数据&#xff0c;挖掘出深…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...