当前位置: 首页 > news >正文

pytorch中有哪些归一化的方式?

在 PyTorch 中,归一化是一种重要的操作,用于调整数据分布或模型参数,以提高模型的训练效率和性能。以下是常见的归一化方式及其应用场景:

1. 数据归一化

(1)torch.nn.functional.normalize

对输入张量沿指定维度进行 L2 范数归一化,使得张量的范数为 1。

代码示例:

import torch
import torch.nn.functional as Fx = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
normalized_x = F.normalize(x, p=2, dim=1)  # 每行进行归一化
print(normalized_x)
(2)自定义归一化

将输入数据缩放到特定范围(如 [0, 1][-1, 1])。

代码示例:

x = torch.tensor([1.0, 2.0, 3.0])
x_min, x_max = x.min(), x.max()
normalized_x = (x - x_min) / (x_max - x_min)  # 归一化到 [0, 1]

2. 批归一化 (Batch Normalization)

(1)torch.nn.BatchNorm1d/2d/3d

对多维输入(如图像、序列数据)进行批归一化,主要用于神经网络的隐藏层。

  • BatchNorm1d:用于 1D 输入(如序列或全连接层的输出)。
  • BatchNorm2d:用于 2D 输入(如卷积层的输出,(N, C, H, W))。
  • BatchNorm3d:用于 3D 输入(如 3D 卷积的输出,(N, C, D, H, W))。

代码示例:

import torch
import torch.nn as nnbatch_norm = nn.BatchNorm2d(num_features=3)  # 通道数为 3
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = batch_norm(x)

3. 层归一化 (Layer Normalization)

(1)torch.nn.LayerNorm

对每个样本的特定维度进行归一化,常用于 RNN 或 Transformer。

代码示例:

import torch
import torch.nn as nnlayer_norm = nn.LayerNorm(normalized_shape=10)  # 归一化的维度大小
x = torch.randn(5, 10)  # (batch_size, features)
normalized_x = layer_norm(x)

4. 实例归一化 (Instance Normalization)

(1)torch.nn.InstanceNorm1d/2d/3d

对每个样本的特征图进行归一化,适用于风格迁移或生成模型。

代码示例:

import torch
import torch.nn as nninstance_norm = nn.InstanceNorm2d(num_features=3)
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = instance_norm(x)

5. 局部响应归一化 (Local Response Normalization, LRN)

(1)torch.nn.LocalResponseNorm

模仿生物神经元的抑制机制,主要在早期 CNN(如 AlexNet)中使用。

代码示例:

import torch
import torch.nn as nnlrn = nn.LocalResponseNorm(size=5)
x = torch.randn(1, 10, 8, 8)  # (N, C, H, W)
normalized_x = lrn(x)

6. 权值归一化 (Weight Normalization)

(1)torch.nn.utils.weight_norm

对权值进行归一化,常用于加速收敛。

代码示例:

import torch
import torch.nn as nn
from torch.nn.utils import weight_normlinear = nn.Linear(10, 5)
linear = weight_norm(linear)  # 对权值进行归一化

7. 谱归一化 (Spectral Normalization)

(1)torch.nn.utils.spectral_norm

通过对权值矩阵进行奇异值分解,约束最大奇异值,常用于生成对抗网络(GAN)。

代码示例:

import torch
import torch.nn as nn
from torch.nn.utils import spectral_normconv = nn.Conv2d(3, 16, 3)
conv = spectral_norm(conv)  # 对卷积核进行谱归一化

8. 正则化归一化

(1)梯度裁剪(Grad Clipping)

通过裁剪梯度的范数来实现归一化,主要用于防止梯度爆炸。

相关文章:

pytorch中有哪些归一化的方式?

在 PyTorch 中,归一化是一种重要的操作,用于调整数据分布或模型参数,以提高模型的训练效率和性能。以下是常见的归一化方式及其应用场景: 1. 数据归一化 (1)torch.nn.functional.normalize 对输入张量沿…...

Next.js系统性教学:增量静态再生成 (ISR) 完全解析

更多有关Next.js教程,请查阅: 【目录】Next.js 独立开发系列教程-CSDN博客 目录 1. 什么是增量静态再生成 (ISR)? 1.1 传统的静态生成与挑战 1.2 增量静态再生成(ISR)的出现 2. 如何使用增量静态再生成(ISR&…...

视频编辑技术的发展:AI技术在小咖视频混剪中的应用

随着数字技术的飞速发展,视频编辑领域也迎来了革命性的变化。AI技术的引入,使得视频编辑变得更加智能和高效。本文将探讨AI技术在视频混剪领域的应用,并介绍一些实用的工具,帮助用户提升视频编辑的效率和质量。 视频演示 AI技术在…...

【JVM】JVM基础教程(一)

目录 初识JVM JVM是什么? JVM的功能 解释、即时编译和运行 内存管理 常见的JVM JVM虚拟机规范 HotSpot的发展历程 JVM的组成 字节码文件详解 应用场景 以正确姿势打开字节码文件 ​编辑字节码文件的组成 基本信息 Magic魔数 主副版本号 常量池 接口…...

Python并发编程全解析

一、前言 在现代开发中,并发编程是提高性能、响应速度的关键技术之一。Python提供了多种实现并发的方式,如多线程、多进程和异步IO。本篇文章将逐一解析这些技术,探讨其适用场景,并通过代码示例帮助理解。 二、并发编程的核心概念 1. 并发与并行 并发:任务在时间片上交替…...

大语言模型应用Text2SQL本地部署实践初探

自从两年前OpenAI公司发布ChatGPT后,大模型(Large Language Model,简称LLM)相关技术在国内外可谓百家争鸣,遍地开花,在传统数据挖掘、机器学习和深度学习的基础上,正式宣告进入快速发展的人工智能(Artificial Intellig…...

每日十题八股-2024年12月7日

1.说说hashmap的负载因子 2.Hashmap和Hashtable有什么不一样的?Hashmap一般怎么用? 3.ConcurrentHashMap怎么实现的? 4.分段锁怎么加锁的? 5.分段锁是可重入的吗? 6.已经用了synchronized,为什么还要用CAS呢…...

VTK编程指南<三>:基于VTK入门程序解析来理解VTK基础知识

1、VTK入门程序 下面是一个完整的Vtk入门程序&#xff0c;我们基于这个程序来对VTK的基本知识进行一个初步了解。 #include <iostream>#include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL2);// VTK was built with vtkRenderingOpenGL2 VTK_MODULE_INI…...

PyQt5快速开发与实战

PyQt5快速开发与实战相关资源 PyQt5快速开发与实战配套代码资源获取 PyQt5快速开发与实战 第一个要跟大家分享的就是的《PyQt5快速开发与实战》。该书既涵盖了 PyQt5 的基础知识&#xff0c;又包含了实战应用技巧&#xff0c;对 PyQt5 的基本概念和技术细节进行了详细阐述&…...

SpringBoot 开源停车场管理收费系统

一、下载项目文件 下载源码项目文件口令&#xff1a; 【前端小程序地址】(3.0)&#xff1a;伏脂火器白泽知洞座/~6f8d356LNL~:/【后台管理地址】(3.0)&#xff1a;伏脂火器仇恨篆洞座/~0f4a356Ks2~:/【岗亭端地址】(3.0)&#xff1a;动作火器智汇堂多好/~dd69356K6r~:/复制口令…...

cmake: error while loading shared libraries: libssl.so.1.1

在ubuntu22.04中编译c文件时出现如下错误&#xff1a; cmake: error while loading shared libraries: libssl.so.1.1: cannot open shared object file: No such file or directory 解决办法&#xff1a;1.进网站下载对应的.deb文件&#xff0c;链接为&#xff1a;https://sec…...

部署loki,grafana 以及springcloud用法举例

文章目录 场景docker 部署grafanadocker-compose部署loki维护配置文件 local-config.yaml维护docker-compose.yml配置启动 grafana 添加loki数据源springcloud用法举例查看loki的explore,查看日志 场景 小公司缺少运维岗位&#xff0c;需要研发自己部署日志系统&#xff0c;elk…...

后端-编辑按钮的实现

编辑一共要实现两步&#xff1a; 1.点击编辑蹦出来一个弹窗&#xff0c;此时需要回显&#xff0c;根据id查出来这条数据 2.修改某些值之后点击保存的时候调用修改的接口 根据id查询的时候正常操作 修改值的时候要注意一些问题 mapper层的Employee和impl层的接收实体不一样...

uniapp中的@tap与@click:点击事件的微妙差异

在uniapp的开发过程中&#xff0c;我们经常会遇到两种点击事件&#xff1a;tap和click。虽然它们都是点击事件&#xff0c;但在实际使用中却存在一些微妙的差异。本文将详细解析这两种事件的区别&#xff0c;帮助开发者更好地理解和应用。 首先&#xff0c;让我们来看看它们的…...

Uniapp的vue、nvue、uvue后缀名区别

在 UniApp 中&#xff0c;.vue、.nvue 和 .uvue 是不同的文件后缀名&#xff0c;每个文件格式的使用场景和兼容性略有不同。下面是每个文件后缀的详细解释以及它们的兼容性&#xff1a; 1. .vue 文件 定义&#xff1a;.vue 是标准的 Vue 单文件组件格式&#xff0c;主要用于基…...

完美解决Qt Qml窗口全屏软键盘遮挡不显示

1、前提 说明&#xff1a;我使用的是第三方软键盘 QVirtualKeyboard QVirtualKeyboard: Qt5虚拟键盘支持中英文,仿qt官方的virtualkeyboard模块,但使用QWidget实现。 - Gitee.com 由于参考了几篇文章尝试但没有效果&#xff0c;链接如下&#xff1a; 文章一&#xff1a;可能…...

寄存器、缓存、内存三者关系

寄存器、缓存、内存三者关系&#xff1a; 按与CPU远近来分&#xff0c;离得最近的是寄存器&#xff0c;然后缓存(CPU缓存)&#xff0c;最后内存。CPU计算时&#xff0c;先预先把要用的数据从硬盘读到内存&#xff0c;然后再把即将要用的数据读到寄存器。于是 CPU<--->…...

九、RNN的变体

RNN的变体 前言一、长短期记忆网络&#xff08;LSTM&#xff09;1.1 LSTM结构分析1.1.1 遗忘门1.1.1.1 遗忘门结构图与计算公式1.1.1.2 结构分析1.1.1.3 遗忘门的由来1.1.1.4 遗忘门的内部演示 1.1.2 输入门1.1.2.1 输入门结构图与计算公式1.1.2.2 结构分析1.1.2.3 输入门的内部…...

高级java每日一道面试题-2024年12月07日-JVM篇-如何选择垃圾收集器?

如果有遗漏,评论区告诉我进行补充 面试官: 如何选择垃圾收集器? 我回答: 在Java高级面试中&#xff0c;选择垃圾收集器&#xff08;Garbage Collector&#xff0c;GC&#xff09;是一个重要且常见的议题。选择合适的垃圾收集器对于优化应用程序的性能至关重要。以下是对如何…...

棋牌游戏项目ctrl + c无法退出进程问题

棋牌游戏项目ctrl c无法退出进程问题 运行的服务为 user , 启动命令为 cd user && go run main.go启动之前先加入调试语句 在 go func() { metric.Serve(...) } 打日志在 app.Run(...) 打日志 user/main.go var configFile flag.String("config", "…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...