当前位置: 首页 > news >正文

【特殊子序列 DP】力扣509. 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

示例 1:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:
0 <= n <= 30

动态规划

class Solution {
public:int fib(int n) {vector<int> dp(n + 1);if(n == 0) return 0;if(n == 1) return 1;dp[0] = 0, dp[1] = 1;for(int i = 2; i <= n; i++){   dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

时间复杂度:O(n)。
空间复杂度:O(n)。

定义一个数组dp[i]代表f(n)的值,然后得出状态转移方程 dp[i] = dp[i-1] + dp[i-2],最后返回dp[n]即可。

相关文章:

【特殊子序列 DP】力扣509. 斐波那契数

斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n - 2)&#xff0c;其中 n > 1 给定 n &…...

linux 架构详解

Linux 是一种开源的操作系统内核&#xff0c;最初由 Linus Torvalds 于 1991 年创建。它是一个基于 Unix 的操作系统内核&#xff0c;用于构建完整的操作系统。Linux 架构是指 Linux 操作系统的内部结构和组成组件的工作方式。 整体架构 Linux系统通常被看作是一个层次化的结…...

Spring Data Elasticsearch

简介说明 spring-data-elasticsearch是比较好用的一个elasticsearch客户端&#xff0c;本文介绍如何使用它来操作ES。本文使用spring-boot-starter-data-elasticsearch&#xff0c;它内部会引入spring-data-elasticsearch。 Spring Data ElasticSearch有下边这几种方法操作El…...

OpenGL编译用户着色器shader

shader相信很多朋友们都听说过&#xff0c;shader就是运行再GPU上的程序。虽然是这么说&#xff0c;但是我们发现&#xff0c;很多IDE开发工具比如说visual studio 没有办法直接去运行shader代码。这是因为&#xff0c;许多编译器不会自动将shader文件编译成可执行的代码然后发…...

过期策略、内存淘汰机制

1.过期策略&#xff1a;请求时删除 定期删除 请求时删除&#xff1a;使用key之前&#xff0c;检查是否过期&#xff0c;属于一种被动的处理方式。 因此&#xff0c;过期时间到了不表示这个key真的被删除了 定期删除&#xff1a;Redis默认每隔100ms检查&#xff0c;有过期ke…...

Scala的正则表达式

package hfdobject Test35_3 {def main(args: Array[String]): Unit {println("a\tb")//定义一个规则 正则表达式//1. .表示除了换行之外的其他的任意单个字符//2. \d等于[0-9] 匹配一个数字//3. \D除了\d之外的其他的任意字符&#xff0c;表示非数字//4. \w等价于[…...

关于睡懒觉

我们经常听到一个词&#xff1a;睡懒觉。 我认为&#xff0c;睡懒觉这个词&#xff0c;是错误的。 人&#xff0c;是需要睡眠的&#xff0c;睡不够&#xff0c;就不会醒。睡够了&#xff0c;自然会醒&#xff0c;也不想继续睡。不信你试试&#xff0c;睡够了&#xff0c;你…...

【算法day10】栈与队列:拓展与应用

题目引用 逆波兰表达式求值滑动窗口最大值前k个高频元素 1.逆波兰表达式求值 给你一个字符串数组 tokens &#xff0c;表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意&#xff1a; 有效的算符为 ‘’、‘-’、‘*’ 和…...

爆肝Android JNI - 延展Android蓝牙JNI学习

零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C++等,加上网络上其实没有一个完整的介绍Bluedroid系列的文档,所以不管是蓝牙初学者还是蓝牙从业人员…...

总篇:Python3+Request+Pytest+Allure+Jenkins接口自动化框架设计思路

1、技术选型 Python3 Python 是一种广泛使用的高级编程语言,具有简洁、易读、易维护的特点。 Python 拥有丰富的第三方库,可以方便地进行接口测试的开发。 Request Request 是一个强大的 HTTP 库,用于发送 HTTP 请求和处理响应。 Request 支持多种 HTTP 方法,如 GET、P…...

Java的Map介绍以及常见方法和三种遍历方式

Java的Map介绍以及常见方法和三种遍历方式 1 Java 中的 Map 介绍 在 Java 中&#xff0c;Map 是一个接口&#xff0c;它提供了一种存储键值对&#xff08;key-value pairs&#xff09;的方式。每个键&#xff08;key&#xff09;都关联着一个值&#xff08;value&#xff09;…...

C/C++基础知识复习(39)

1) 什么是封装性&#xff1f;C中如何实现封装&#xff1f; 封装性&#xff08;Encapsulation&#xff09;是面向对象编程中的一个重要概念&#xff0c;它指的是将对象的状态&#xff08;数据&#xff09;和行为&#xff08;方法&#xff09;绑定在一起&#xff0c;并且通过访问…...

自建服务器,数据安全有保障

在远程桌面工具的选择上&#xff0c;向日葵和TeamViewer功能强大&#xff0c;但都存在收费昂贵、依赖第三方服务器、数据隐私难以完全掌控等问题。相比之下&#xff0c;RustDesk 凭借开源免费、自建服务的特性脱颖而出&#xff01;用户可以在自己的服务器上部署RustDesk服务端&…...

CCF-GESP 编程能力认证 C++ 七级 2024年9月份判断题详细解析

链接&#xff1a;CCF-GESP 编程能力认证 C 七级 2024年9月份选择题详细解析-CSDN博客 目录 第 1 题 第 2 题 第 3 题 第 4 题 第 5 题 第 6 题 第 7 题 第 8 题 第 9 题 第 10 题 第 1 题 表达式 a << 1 的结果为 a&#xff08;错误&#xff09; 【a是字符常…...

使用Vue3+Echarts实现加载中国地图,点击省份地图下钻(完整教程)

一. 前言 在众多 ECharts 图表类型中&#xff0c;开发者始终绕不开的有各种各样的地图开发&#xff0c;关于地图开发&#xff0c;可能比其他图表相对繁琐一些&#xff0c;其实说简单也简单&#xff0c;说复杂也复杂&#xff0c;其中不乏有层级地图、3D 地图等&#xff0c;感觉…...

NUMA-非统一内存访问架构

NUMA&#xff08;Non-Uniform Memory Access&#xff09; 是一种计算机内存架构&#xff0c;主要用于多处理器系统。NUMA架构中的每个处理器都连接到自己的本地内存&#xff0c;并且可以访问其他处理器的内存&#xff0c;但访问其他处理器的内存速度较慢。 内核通过调度优化进…...

初识交换机和路由器

目录 初识交换机和路由器交换机路由器主要区别工作流程如果是交换机&#xff1a;如果是路由器 初识交换机和路由器 左为路由器&#xff0c;右为交换机 交换机 交换机的前身是集线器&#xff0c;集线器是物理层的设备&#xff0c;有很多接口&#xff0c;当一台计算机A想发消息…...

SQL面试题——滴滴SQL面试题 取出累计值与1000差值最小的记录

滴滴SQL面试题 取出累计值与1000差值最小的记录 今天的题目来自滴滴出行 已知有表cost_detail包含id和money两列,id为自增,请累加计算money值,并求出累加值与1000差值最小的记录。 +-----+--------+ | id | money | +-----+--------+ | 1 | 200 | | 2 | 300 …...

openEuler 22.03 使用cephadm安装部署ceph集群

目录 目的步骤规格步骤ceph部署前准备工作安装部署ceph集群ceph集群添加node与osdceph集群一些操作组件服务操作集群进程操作 目的 使用ceph官网的cephadm无法正常安装&#xff0c;会报错ERROR: Distro openeuler version 22.03 not supported 在openEuler上实现以cephadm安装部…...

C++哈希(一)

1.底层结构 顺序结构以及平衡中&#xff0c;元素关键码与其存储位置之间没有相对应的关系&#xff0c;因此在查找一个元素时&#xff0c;要经过关键码的多次比较。顺序查找的时间复杂度为O(N)。 理想的搜索方法&#xff1a;可以不经过比较&#xff0c;依次直接从表中直接搜索…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...