【pyspark学习从入门到精通23】机器学习库_6
目录
分割连续变量
标准化连续变量
分类
分割连续变量
我们经常处理高度非线性的连续特征,而且只用一个系数很难拟合到我们的模型中。
在这种情况下,可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时,将值划分到离散的桶中是有用的。
首先,让我们使用以下代码创建一些伪造数据:
import numpy as np
x = np.arange(0, 100)
x = x / 100.0 * np.pi * 4
y = x * np.sin(x / 1.764) + 20.1234
现在,我们可以通过以下代码创建一个 DataFrame:
schema = typ.StructType([typ.StructField('continuous_var', typ.DoubleType(), False)
])
data = spark.createDataFrame([[float(e), ] for e in y], schema=schema)

接下来,我们将使用 QuantileDiscretizer 模型将我们的连续变量分割成五个桶(numBuckets 参数):
discretizer = ft.QuantileDiscretizer(numBuckets=5, inputCol='continuous_var', outputCol='discretized')
让我们看看我们得到了什么:
data_discretized = discretizer.fit(data).transform(data)
我们的函数现在看起来如下:

现在我们可以将这个变量当作分类变量,并使用 OneHotEncoder 进行编码,以便将来使用。
标准化连续变量
标准化连续变量不仅有助于更好地理解特征之间的关系(因为解释系数变得更容易),而且还有助于计算效率,并防止陷入一些数值陷阱。以下是如何在 PySpark ML 中进行操作。
首先,我们需要创建我们的连续变量的向量表示(因为它只是一个单独的浮点数):
vectorizer = ft.VectorAssembler(inputCols=['continuous_var'], outputCol= 'continuous_vec')
接下来,我们构建我们的标准化器和管道。通过将 withMean 和 withStd 设置为 True,该方法将去除均值,并将方差缩放到单位长度:
normalizer = ft.StandardScaler(inputCol=vectorizer.getOutputCol(), outputCol='normalized', withMean=True,withStd=True
)
pipeline = Pipeline(stages=[vectorizer, normalizer])
data_standardized = pipeline.fit(data).transform(data)
这是转换后的数据的样子:
如你所见,数据现在围绕 0 振荡,具有单位方差(绿线)。
分类
到目前为止,我们只使用了 PySpark ML 中的 LogisticRegression 模型。在这一部分,我们将使用 RandomForestClassifier 再次模拟婴儿的生存机会。
在我们可以做到这一点之前,我们需要将标签特征转换为 DoubleType:
import pyspark.sql.functions as func
births = births.withColumn('INFANT_ALIVE_AT_REPORT', func.col('INFANT_ALIVE_AT_REPORT').cast(typ.DoubleType())
)
births_train, births_test = births \.randomSplit([0.7, 0.3], seed=666)
现在我们已经将标签转换为双精度,我们准备构建我们的模型。我们以与之前类似的方式进行,区别是我们将重用本章早期的编码器和 featureCreator。numTrees 参数指定应该有多少决策树在我们的随机森林中,maxDepth 参数限制了树的深度:
classifier = cl.RandomForestClassifier(numTrees=5, maxDepth=5, labelCol='INFANT_ALIVE_AT_REPORT')
pipeline = Pipeline(stages=[encoder,featuresCreator, classifier])
model = pipeline.fit(births_train)
test = model.transform(births_test)
现在让我们来看看 RandomForestClassifier 模型与 LogisticRegression 模型相比表现如何:
evaluator = ev.BinaryClassificationEvaluator(labelCol='INFANT_ALIVE_AT_REPORT')
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderROC"}))
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderPR"}))
我们得到以下结果:

嗯,正如你看到的,结果比逻辑回归模型好大约 3 个百分点。让我们测试一下单棵树的模型表现如何:
classifier = cl.DecisionTreeClassifier(maxDepth=5, labelCol='INFANT_ALIVE_AT_REPORT')
pipeline = Pipeline(stages=[encoder,featuresCreator, classifier])
model = pipeline.fit(births_train)
test = model.transform(births_test)
evaluator = ev.BinaryClassificationEvaluator(labelCol='INFANT_ALIVE_AT_REPORT')
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderROC"}))
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderPR"}))
前面的代码给出了以下结果:

一点也不差!实际上,在精确度-召回率关系方面,它的表现比随机森林模型更好,而且在 ROC 下面积方面只是稍微差一些。我们可能刚刚发现了一个赢家!
相关文章:
【pyspark学习从入门到精通23】机器学习库_6
目录 分割连续变量 标准化连续变量 分类 分割连续变量 我们经常处理高度非线性的连续特征,而且只用一个系数很难拟合到我们的模型中。 在这种情况下,可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时,将值划分到离散的桶中…...
FPGA实战篇(呼吸灯实验)
1.呼吸灯简介 呼吸灯采用 PWM 的方式,在固定的频率下,通过调整占空比的方式来控制 LED 灯亮度的变化。 PWM(Pulse Width Modulation ),即脉冲宽度调制,它利用微处理器输出的 PWM 信号,实现对…...
面经自测——自我介绍
前言 这是作者新开的坑,一切题目都是从网上找的原题,为了总结网上有关的面经,以便在真实面试中较为流利的回答面试官的问题 面试之——自我介绍 自我介绍是面试中最常见的问题之一,主要目的是让面试官了解你的背景、技能和职业…...
在 LS-DYNA 中将应力转换为用户定义的坐标系
介绍 通常,使用 LS-DYNA 或 Ansys Mechanical 等仿真工具解决工程问题需要将张量结果与解析解进行比较。一个这样的例子是加压圆柱体,其中圆周应力或环状应力是感兴趣的主要应力度量。例如,如果对具有复杂端部处理的几何结构进行此类仿真&am…...
【Spark】 groupByKey与reduceByKey的区别
groupByKey 操作:将相同键的所有值收集到一个集合中。实现:不会在map端进行局部聚合,而是直接将所有相同键的数据传输到reduce端进行聚合。缺点:由于没有本地聚合,groupByKey会导致大量的数据传输和shuffle,…...
数据库与数据库管理系统概述
title: 数据库与数据库管理系统概述 date: 2024/12/7 updated: 2024/12/7 author: cmdragon excerpt: 在信息化迅速发展的时代,数据已成为企业和组织的重要资产。数据库与数据库管理系统(DBMS)是高效存储、管理和利用数据的核心工具。本文首先定义了数据库的基本概念和特…...
(简单5步实现,免费且比GPT4.0更好用)部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型
摘要: 本文将指导您如何部署一个本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和grok-beta大模型,以实现高效、智能的聊天体验。 引言: 由马斯克X-AI发布的Grok 2大模型以其卓越的性能超越了GPT4.0。Grok模型支持超长文本…...
滚珠螺杆导程的定义与重要性
滚珠螺杆导程是指螺杆每旋转一圈时,螺母(或与之配合的移动部件)沿螺杆轴线方向移动的距离。这个参数在机械设计和制造中非常重要,因为它直接影响到传动系统的速度、精度和效率。 导程是滚珠螺杆的重要参数之一,它与切削…...
【特殊子序列 DP】力扣509. 斐波那契数
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2),其中 n > 1 给定 n &…...
linux 架构详解
Linux 是一种开源的操作系统内核,最初由 Linus Torvalds 于 1991 年创建。它是一个基于 Unix 的操作系统内核,用于构建完整的操作系统。Linux 架构是指 Linux 操作系统的内部结构和组成组件的工作方式。 整体架构 Linux系统通常被看作是一个层次化的结…...
Spring Data Elasticsearch
简介说明 spring-data-elasticsearch是比较好用的一个elasticsearch客户端,本文介绍如何使用它来操作ES。本文使用spring-boot-starter-data-elasticsearch,它内部会引入spring-data-elasticsearch。 Spring Data ElasticSearch有下边这几种方法操作El…...
OpenGL编译用户着色器shader
shader相信很多朋友们都听说过,shader就是运行再GPU上的程序。虽然是这么说,但是我们发现,很多IDE开发工具比如说visual studio 没有办法直接去运行shader代码。这是因为,许多编译器不会自动将shader文件编译成可执行的代码然后发…...
过期策略、内存淘汰机制
1.过期策略:请求时删除 定期删除 请求时删除:使用key之前,检查是否过期,属于一种被动的处理方式。 因此,过期时间到了不表示这个key真的被删除了 定期删除:Redis默认每隔100ms检查,有过期ke…...
Scala的正则表达式
package hfdobject Test35_3 {def main(args: Array[String]): Unit {println("a\tb")//定义一个规则 正则表达式//1. .表示除了换行之外的其他的任意单个字符//2. \d等于[0-9] 匹配一个数字//3. \D除了\d之外的其他的任意字符,表示非数字//4. \w等价于[…...
关于睡懒觉
我们经常听到一个词:睡懒觉。 我认为,睡懒觉这个词,是错误的。 人,是需要睡眠的,睡不够,就不会醒。睡够了,自然会醒,也不想继续睡。不信你试试,睡够了,你…...
【算法day10】栈与队列:拓展与应用
题目引用 逆波兰表达式求值滑动窗口最大值前k个高频元素 1.逆波兰表达式求值 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 ‘’、‘-’、‘*’ 和…...
爆肝Android JNI - 延展Android蓝牙JNI学习
零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C++等,加上网络上其实没有一个完整的介绍Bluedroid系列的文档,所以不管是蓝牙初学者还是蓝牙从业人员…...
总篇:Python3+Request+Pytest+Allure+Jenkins接口自动化框架设计思路
1、技术选型 Python3 Python 是一种广泛使用的高级编程语言,具有简洁、易读、易维护的特点。 Python 拥有丰富的第三方库,可以方便地进行接口测试的开发。 Request Request 是一个强大的 HTTP 库,用于发送 HTTP 请求和处理响应。 Request 支持多种 HTTP 方法,如 GET、P…...
Java的Map介绍以及常见方法和三种遍历方式
Java的Map介绍以及常见方法和三种遍历方式 1 Java 中的 Map 介绍 在 Java 中,Map 是一个接口,它提供了一种存储键值对(key-value pairs)的方式。每个键(key)都关联着一个值(value)…...
C/C++基础知识复习(39)
1) 什么是封装性?C中如何实现封装? 封装性(Encapsulation)是面向对象编程中的一个重要概念,它指的是将对象的状态(数据)和行为(方法)绑定在一起,并且通过访问…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
恶补电源:1.电桥
一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
C# winform教程(二)----checkbox
一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...
轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...
