当前位置: 首页 > news >正文

【pyspark学习从入门到精通23】机器学习库_6

目录

分割连续变量

标准化连续变量

分类


分割连续变量

我们经常处理高度非线性的连续特征,而且只用一个系数很难拟合到我们的模型中。
在这种情况下,可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时,将值划分到离散的桶中是有用的。

首先,让我们使用以下代码创建一些伪造数据:

import numpy as np
x = np.arange(0, 100)
x = x / 100.0 * np.pi * 4
y = x * np.sin(x / 1.764) + 20.1234

现在,我们可以通过以下代码创建一个 DataFrame:

schema = typ.StructType([typ.StructField('continuous_var', typ.DoubleType(), False)
])
data = spark.createDataFrame([[float(e), ] for e in y], schema=schema)

接下来,我们将使用 QuantileDiscretizer 模型将我们的连续变量分割成五个桶(numBuckets 参数):

discretizer = ft.QuantileDiscretizer(numBuckets=5, inputCol='continuous_var', outputCol='discretized')

让我们看看我们得到了什么:

data_discretized = discretizer.fit(data).transform(data)

我们的函数现在看起来如下:

现在我们可以将这个变量当作分类变量,并使用 OneHotEncoder 进行编码,以便将来使用。

标准化连续变量

标准化连续变量不仅有助于更好地理解特征之间的关系(因为解释系数变得更容易),而且还有助于计算效率,并防止陷入一些数值陷阱。以下是如何在 PySpark ML 中进行操作。

首先,我们需要创建我们的连续变量的向量表示(因为它只是一个单独的浮点数):

vectorizer = ft.VectorAssembler(inputCols=['continuous_var'], outputCol= 'continuous_vec')

接下来,我们构建我们的标准化器和管道。通过将 withMean 和 withStd 设置为 True,该方法将去除均值,并将方差缩放到单位长度:

normalizer = ft.StandardScaler(inputCol=vectorizer.getOutputCol(), outputCol='normalized', withMean=True,withStd=True
)
pipeline = Pipeline(stages=[vectorizer, normalizer])
data_standardized = pipeline.fit(data).transform(data)

这是转换后的数据的样子:

如你所见,数据现在围绕 0 振荡,具有单位方差(绿线)。

分类

到目前为止,我们只使用了 PySpark ML 中的 LogisticRegression 模型。在这一部分,我们将使用 RandomForestClassifier 再次模拟婴儿的生存机会。

在我们可以做到这一点之前,我们需要将标签特征转换为 DoubleType:

import pyspark.sql.functions as func
births = births.withColumn('INFANT_ALIVE_AT_REPORT', func.col('INFANT_ALIVE_AT_REPORT').cast(typ.DoubleType())
)
births_train, births_test = births \.randomSplit([0.7, 0.3], seed=666)

现在我们已经将标签转换为双精度,我们准备构建我们的模型。我们以与之前类似的方式进行,区别是我们将重用本章早期的编码器和 featureCreator。numTrees 参数指定应该有多少决策树在我们的随机森林中,maxDepth 参数限制了树的深度:

classifier = cl.RandomForestClassifier(numTrees=5, maxDepth=5, labelCol='INFANT_ALIVE_AT_REPORT')
pipeline = Pipeline(stages=[encoder,featuresCreator, classifier])
model = pipeline.fit(births_train)
test = model.transform(births_test)

现在让我们来看看 RandomForestClassifier 模型与 LogisticRegression 模型相比表现如何:

evaluator = ev.BinaryClassificationEvaluator(labelCol='INFANT_ALIVE_AT_REPORT')
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderROC"}))
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderPR"}))

我们得到以下结果:

嗯,正如你看到的,结果比逻辑回归模型好大约 3 个百分点。让我们测试一下单棵树的模型表现如何:

classifier = cl.DecisionTreeClassifier(maxDepth=5, labelCol='INFANT_ALIVE_AT_REPORT')
pipeline = Pipeline(stages=[encoder,featuresCreator, classifier])
model = pipeline.fit(births_train)
test = model.transform(births_test)
evaluator = ev.BinaryClassificationEvaluator(labelCol='INFANT_ALIVE_AT_REPORT')
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderROC"}))
print(evaluator.evaluate(test, {evaluator.metricName: "areaUnderPR"}))

前面的代码给出了以下结果:

一点也不差!实际上,在精确度-召回率关系方面,它的表现比随机森林模型更好,而且在 ROC 下面积方面只是稍微差一些。我们可能刚刚发现了一个赢家!
 

相关文章:

【pyspark学习从入门到精通23】机器学习库_6

目录 分割连续变量 标准化连续变量 分类 分割连续变量 我们经常处理高度非线性的连续特征,而且只用一个系数很难拟合到我们的模型中。 在这种情况下,可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时,将值划分到离散的桶中…...

FPGA实战篇(呼吸灯实验)

1.呼吸灯简介 呼吸灯采用 PWM 的方式,在固定的频率下,通过调整占空比的方式来控制 LED 灯亮度的变化。 PWM(Pulse Width Modulation ),即脉冲宽度调制,它利用微处理器输出的 PWM 信号,实现对…...

面经自测——自我介绍

前言 这是作者新开的坑,一切题目都是从网上找的原题,为了总结网上有关的面经,以便在真实面试中较为流利的回答面试官的问题 面试之——自我介绍 自我介绍是面试中最常见的问题之一,主要目的是让面试官了解你的背景、技能和职业…...

在 LS-DYNA 中将应力转换为用户定义的坐标系

介绍 通常,使用 LS-DYNA 或 Ansys Mechanical 等仿真工具解决工程问题需要将张量结果与解析解进行比较。一个这样的例子是加压圆柱体,其中圆周应力或环状应力是感兴趣的主要应力度量。例如,如果对具有复杂端部处理的几何结构进行此类仿真&am…...

【Spark】 groupByKey与reduceByKey的区别

groupByKey 操作:将相同键的所有值收集到一个集合中。实现:不会在map端进行局部聚合,而是直接将所有相同键的数据传输到reduce端进行聚合。缺点:由于没有本地聚合,groupByKey会导致大量的数据传输和shuffle&#xff0c…...

数据库与数据库管理系统概述

title: 数据库与数据库管理系统概述 date: 2024/12/7 updated: 2024/12/7 author: cmdragon excerpt: 在信息化迅速发展的时代,数据已成为企业和组织的重要资产。数据库与数据库管理系统(DBMS)是高效存储、管理和利用数据的核心工具。本文首先定义了数据库的基本概念和特…...

(简单5步实现,免费且比GPT4.0更好用)部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型

摘要: 本文将指导您如何部署一个本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和grok-beta大模型,以实现高效、智能的聊天体验。 引言: 由马斯克X-AI发布的Grok 2大模型以其卓越的性能超越了GPT4.0。Grok模型支持超长文本…...

滚珠螺杆导程的定义与重要性

滚珠螺杆导程是指螺杆每旋转一圈时,螺母(或与之配合的移动部件)沿螺杆轴线方向移动的距离。这个参数在机械设计和制造中非常重要,因为它直接影响到传动系统的速度、精度和效率。 导程是滚珠螺杆的重要参数之一,它与切削…...

【特殊子序列 DP】力扣509. 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2),其中 n > 1 给定 n &…...

linux 架构详解

Linux 是一种开源的操作系统内核,最初由 Linus Torvalds 于 1991 年创建。它是一个基于 Unix 的操作系统内核,用于构建完整的操作系统。Linux 架构是指 Linux 操作系统的内部结构和组成组件的工作方式。 整体架构 Linux系统通常被看作是一个层次化的结…...

Spring Data Elasticsearch

简介说明 spring-data-elasticsearch是比较好用的一个elasticsearch客户端,本文介绍如何使用它来操作ES。本文使用spring-boot-starter-data-elasticsearch,它内部会引入spring-data-elasticsearch。 Spring Data ElasticSearch有下边这几种方法操作El…...

OpenGL编译用户着色器shader

shader相信很多朋友们都听说过,shader就是运行再GPU上的程序。虽然是这么说,但是我们发现,很多IDE开发工具比如说visual studio 没有办法直接去运行shader代码。这是因为,许多编译器不会自动将shader文件编译成可执行的代码然后发…...

过期策略、内存淘汰机制

1.过期策略:请求时删除 定期删除 请求时删除:使用key之前,检查是否过期,属于一种被动的处理方式。 因此,过期时间到了不表示这个key真的被删除了 定期删除:Redis默认每隔100ms检查,有过期ke…...

Scala的正则表达式

package hfdobject Test35_3 {def main(args: Array[String]): Unit {println("a\tb")//定义一个规则 正则表达式//1. .表示除了换行之外的其他的任意单个字符//2. \d等于[0-9] 匹配一个数字//3. \D除了\d之外的其他的任意字符,表示非数字//4. \w等价于[…...

关于睡懒觉

我们经常听到一个词:睡懒觉。 我认为,睡懒觉这个词,是错误的。 人,是需要睡眠的,睡不够,就不会醒。睡够了,自然会醒,也不想继续睡。不信你试试,睡够了,你…...

【算法day10】栈与队列:拓展与应用

题目引用 逆波兰表达式求值滑动窗口最大值前k个高频元素 1.逆波兰表达式求值 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 ‘’、‘-’、‘*’ 和…...

爆肝Android JNI - 延展Android蓝牙JNI学习

零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C++等,加上网络上其实没有一个完整的介绍Bluedroid系列的文档,所以不管是蓝牙初学者还是蓝牙从业人员…...

总篇:Python3+Request+Pytest+Allure+Jenkins接口自动化框架设计思路

1、技术选型 Python3 Python 是一种广泛使用的高级编程语言,具有简洁、易读、易维护的特点。 Python 拥有丰富的第三方库,可以方便地进行接口测试的开发。 Request Request 是一个强大的 HTTP 库,用于发送 HTTP 请求和处理响应。 Request 支持多种 HTTP 方法,如 GET、P…...

Java的Map介绍以及常见方法和三种遍历方式

Java的Map介绍以及常见方法和三种遍历方式 1 Java 中的 Map 介绍 在 Java 中,Map 是一个接口,它提供了一种存储键值对(key-value pairs)的方式。每个键(key)都关联着一个值(value)…...

C/C++基础知识复习(39)

1) 什么是封装性?C中如何实现封装? 封装性(Encapsulation)是面向对象编程中的一个重要概念,它指的是将对象的状态(数据)和行为(方法)绑定在一起,并且通过访问…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...