当前位置: 首页 > news >正文

RFT 强化微调

OpenAI在今天发布的新技术,RFT结合了SFT和RL的优化算法,与传统的监督微调不同,强化微调旨在通过任务训练让模型掌握复杂推理能力,而不仅仅是“记住答案”。

什么是强化微调

强化微调是通过高质量任务数据和参考答案优化大语言模型的推理能力的方法。

核心区别:与传统的监督微调(SFT)不同,RFT 并非简单地“教模型记住答案”,而是引导模型在复杂问题中学会推理,从而更准确地解决任务。

技术构成:RFT 融合了 SFT 的监督学习基础和强化学习(RL)的奖励机制,通过多轮自我优化训练,使模型能生成更高质量的答案。

例如,在医疗领域,RFT 可通过患者症状推断潜在的遗传基因,而不仅仅是回忆训练数据中的信息。这种能力对于处理复杂推理任务尤为重要。

Sam Altman 认为强化微调 Reinforcement Fine-Tuning是2024最牛的技术进展,能帮助大家搞定专业模型的训练。

RFT如何实现

RFT 的实现包括以下几个关键步骤:

1. 数据准备:训练与验证数据集

训练数据集:提供任务样本(如问题与参考答案)用于模型学习。

如图所示训练数据:病例报告(包含基本信息、症状以及没有的症状)、指令和正确答案。

图片

验证数据集:内容与训练集不同,用于测试模型的泛化能力,避免模型“记住答案”。

2. 评分器(Grader)机制

在强化过程中,评分器根据模型输出与正确答案的匹配程度进行评分(0~1)。

• 例如,若正确答案出现在模型输出的第 2 位,评分器可能给出 0.7 的分数。

图片

• 不同任务类型可配置特定的评分器,甚至未来将支持自定义评分标准。

图片

3. 强化训练

• 模型通过自定义批量大小、学习率、epoch 数等参数优化训练策略。

图片

• 在训练过程中,模型输出的每条推理路径会通过评分器自动评估并调整,以实现更优表现。

例如,OpenAI 的 o1-mini 模型在强化微调后,其推理准确性显著提升,甚至超越了更大规模的 o1 模型。

可以看出模型在验证集上的得分越来越高。

图片

 

这个经过强化微调的 o1-mini 的表现在各种维度都比O1要强。 

图片

图片

 

 

 

RFT 的优势

强化微调为大语言模型训练带来了以下显著优势:

1. 更强的推理能力

RFT 通过不断优化推理路径,让模型在复杂领域中表现出色,尤其适合解决有明确正确答案的任务。例如,在数学推理问题上,RFT 能够提高模型的准确率。

2. 小模型的高效表现

实验表明,经过 RFT 训练的小规模模型(如 o1-mini),在多个指标上超越未经强化微调的大模型。这使得专业化模型的训练成本大幅降低。

3. 灵活适配多任务场景

RFT 技术适用于医疗、法律、保险、工程等多种专业领域。理论上,只要有合适的数据和评分器,就可以训练出定制化的专业 AI 助手。

目前,OpenAI 正在对 RFT 进行 Alpha 测试,主要面向与专家团队协作处理复杂任务的机构用户。随着技术的成熟,个人用户预计将在 2025 年体验到这一突破性技术。

RFT来源

强化微调(REFT)的研究方向最早由字节跳动提出,并在 2024 年 ACL 顶会上通过论文《REFT: Reasoning with REinforced Fine-Tuning》详细阐述。通过多条推理路径的学习和优化,显著提升了模型在推理任务中的表现。。

论文中提到,REFT 技术分为两个阶段:

预热阶段(Warm-up):使用 SFT 方法为模型提供基础推理能力,让模型能够生成初步的合理响应。

图片

强化学习阶段:采用 PPO(Proximal Policy Optimization)算法,通过奖励机制优化模型输出质量。

图片

这项技术的最初目标是提升模型在数学推理任务上的表现,并取得了显著成果。例如,在 GSM8K 数据集上的测试中,经过 REFT 训练的模型准确率较 SFT 提升了近 10 个百分点。

相关文章:

RFT 强化微调

OpenAI在今天发布的新技术,RFT结合了SFT和RL的优化算法,与传统的监督微调不同,强化微调旨在通过任务训练让模型掌握复杂推理能力,而不仅仅是“记住答案”。 什么是强化微调 强化微调是通过高质量任务数据和参考答案优化大语言模型…...

SpringBoot教程(三十二) SpringBoot集成Skywalking链路跟踪

SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪 一、Skywalking是什么?二、Skywalking与JDK版本的对应关系三、Skywalking下载四、Skywalking 数据存储五、Skywalking 的启动六、部署探针 前提: Agents 8.9.0 放入 …...

分布式搜索引擎Elasticsearch

Elasticsearch是一个基于Lucene库的开源分布式搜索引擎,它被设计用于云计算中,能够实现快速、near-real-time的搜索,并且可以进行大规模的分布式索引。 以下是一个简单的Python代码示例,展示如何使用Elasticsearch的Python客户端…...

在Vue.js中生成二维码(将指定的url+参数 生成二维码)

在Vue.js中生成二维码,你可以使用JavaScript库如qrcode或qr.js。以下是一个简单的例子,展示如何在Vue组件中使用qrcode库将指定的URL加上参数生成二维码。 首先,你需要安装qrcode库。如果你使用的是npm或yarn,可以通过命令行安装…...

统信桌面专业版部署postgresql-14.2+postgis-3.2方法介绍

文章来源:统信桌面专业版部署postgresql-14.2postgis-3.2方法介绍 | 统信软件-知识分享平台 应用场景 CPU架构:X86(海光C86-3G 3350) OS版本信息:1070桌面专业版 软件信息:postgresql-14.2postgis-3.2 …...

数字图像处理(16):RGB与HSV互转

(1)HSV颜色模型:HSV颜色模型,又称为六角锥体模型,以色调(H)、饱和度(S)、亮度(V)为基础,能够更加自然地表现和处理颜色,因…...

web组态可视化编辑器

随着工业智能制造的发展,工业企业对设备可视化、远程运维的需求日趋强烈,传统的单机版组态软件已经不能满足越来越复杂的控制需求,那么实现web组态可视化界面成为了主要的技术路径。 行业痛点 对于软件服务商来说,将单机版软件转…...

数组 - 八皇后 - 困难

************* C topic: 面试题 08.12. 八皇后 - 力扣(LeetCode) ************* Good morning, gays, Fridary angin and try the hard to celebrate. Inspect the topic: This topic I can understand it in a second. And I do rethink a movie, …...

【分布式】Redis分布式缓存

一、什么是Redis分布式缓存 Redis分布式缓存是指使用Redis作为缓存系统来存储和管理数据的分布式方案。在分布式系统中,多台服务器共同对外提供服务,为了提高系统的性能和可扩展性,通常会引入缓存来减轻数据库的压力。Redis作为一种高性能的…...

Ubuntu——extrepo添加部分外部软件源

extrepo 是一个用于 Ubuntu 和其他基于 Debian 的系统的工具,它的主要作用是简化和管理外部软件源(repositories)的添加和更新。通过使用 extrepo,用户可以方便地添加、删除和管理第三方软件源,而不需要手动编辑源列表…...

评估大语言模型(LLM)在分子预测任务能够理解分子几何形状性能

摘要 论文地址:https://arxiv.org/pdf/2403.05075 近年来,机器学习模型在各个领域越来越受欢迎。学术界和工业界都投入了大量精力来提高机器学习的效率,以期实现人工通用智能(AGI)。其中,大规模语言模型&a…...

如何查看电脑刷新率

Windows 系统 通过显示设置查看: 右键点击桌面空白处,选择 “显示设置”。在打开的窗口中,找到 “高级显示设置”。点击 “显示适配器属性”。在弹出的窗口中,选择 “监视器” 选项卡,即可看到当前的屏幕刷新率。使用 …...

mysql集群MHA方式部署

1. 基本信息 部署机器角色部署路径192.168.242.71MySQL-Mater MHA-NodeMySQL: /alidata1/mysql-8.0.28192.168.242.72MySQL-Slave MHA-NodeMHA-Node: /alidata1/admin/tools/mha4mysql-node-0.58192.168.242.73MySQL-Slave MHA-Node192.168.242.74MHA-ManagerMHA-Manager: …...

第十七章 使用 MariaDB 数据库管理系统

1. 数据库管理系统 数据库是指按照某些特定结构来存储数据资料的数据仓库。在当今这个大数据技术迅速崛起的年代,互联网上每天都会生成海量的数据信息,数据库技术也从最初只能存储简单的表格数据的单一集中存储模式,发展到了现如今存储海量…...

rabbitmq 安装延时队列插件rabbitmq_delayer_message_exchange(linux centOS 7)

1.插件版本 插件地址:Community Plugins | RabbitMQ rabbitmq插件需要对应的版本,根据插件地址找到插件 rabbitmq_delayer_message_exchange 点击Releases 因为我rabbitmq客户端显示的版本是: 所以我选择插件版本是: 下载 .ez文…...

Unity性能优化---动态网格组合(一)

网格组合是将 Unity 中的多个对象组合为一个对象的技术。因此,在多物体的场景中,使用网格组合,会有效的减少小网格的数量,最终将得到一个包含许多小网格的大网格游戏对象,这将提高游戏或模拟器的性能。在Unity 的 “St…...

Appium:安装uiautomator2失败

目录 1、通过nmp安装uiautomator2:失败 2、通过 Appium 的平台直接安装驱动程序 3、通过pip 来安装 uiautomator2 1、通过nmp安装uiautomator2:失败 我先是通过npm安装的uiautomator2,也显示已经安装成功了: npm install -g …...

电子信息工程自动化 单片机彩灯控制

摘要 随着社会经济和科学技术的不断进步,人们在保持发展的同时,环境带给人类的影响已经不足以让我们忽视,所以城市的美化问题慢慢的进入了人们的眼帘,PLC的产生给带电子产品带来了巨大变革,彩灯的使用在城市的美化中变…...

word poi-tl 表格功能增强,实现表格功能垂直合并

目录 问题解决问题poi-tl介绍 功能实现引入依赖模版代码效果图 附加(插件实现)MergeColumnData 对象MergeGroupData 类ServerMergeTableData 数据信息ServerMergeTablePolicy 合并插件 问题 由于在开发功能需求中,word文档需要垂直合并表格&…...

LSTM-CNN-BP-RF-SVM五模型咖喱融合策略混合预测模型

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 LSTM-CNN-BP-RF-SVM五模型咖喱融合策略混合预测模型 Matlab代码注释清晰。 程序设计 完整程序和数据获取方式:私信博主回复LSTM-CNN-BP-RF-SVM五模型咖喱融合策略混合预测模型(Matlab&#…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...