当前位置: 首页 > news >正文

数字图像处理(15):图像平移

        (1)图像平移的基本原理:计算每个像素点的移动向量,并将这些像素按照指定的方向和距离进行移动。

        (2)平移向量包括水平和垂直分量,可以表示为(dx,dy),其中dx表示水平方向上的移动距离,dy表示垂直方向上的移动距离。

        (3)经过平移后,新图像中的每个像素点在原图像中都有对应的像素点。图像平移使用软件开发语言实现很容易,但在FGPA中实现需要考虑缓存。

        (4)matlab实现代码:

% 读取图像
% imread函数用于读取图像文件,支持多种格式如BMP、PNG、JPG等
img = imread('1_1920x1080.bmp');% 获取图像尺寸信息
% size函数返回矩阵的维度,对于彩色图像返回[高度 宽度 通道数]
[rows, cols, channels] = size(img);% 创建仿射变换矩阵
% 这里创建的是一个2x3的变换矩阵,用于定义图像的变换方式
% [1 0 300;   - 第一行表示x方向的变换:x'= 1*x + 0*y + 300
%  0 1 200]    - 第二行表示y方向的变换:y'= 0*x + 1*y + 200
% 这个矩阵表示将图像向右平移300像素,向下平移200像素
M = single([1, 0, 300; 0, 1, 200]);% 执行仿射变换
% affine2d函数用于创建二维仿射变换对象
tform = affine2d(M');  % 注意MATLAB中需要转置变换矩阵
% imwarp函数执行图像变换
% OutputView选项指定输出图像的大小,这里保持与原图相同
res = imwarp(img, tform, 'OutputView', imref2d([rows cols]));% 保存变换后的图像
% imwrite函数将图像保存到文件
% 第一个参数是图像数据,第二个参数是文件名
imwrite(res, 'result.bmp');% 显示结果图像
% figure创建新的图形窗口
figure;
% subplot用于创建子图,这里创建1x2的子图布局
subplot(1,2,1);
imshow(img);  % 显示原图
title('原始图像');
subplot(1,2,2);
imshow(res);  % 显示变换后的图像
title('变换后的图像');

        (5)FPGA仿真实现:

module move
(input   wire            clk         ,input   wire            reset_n     ,input   wire    [10:0]  img_width   ,input   wire    [10:0]  img_height  ,input   wire    [10:0]  img_x_start ,input   wire    [10:0]  img_y_start ,input   wire    [23:0]  img_data_i  ,output  wire            wr_ready    ,output  reg             valid_o     ,output  reg     [23:0]  img_data_o);reg [11:0]  h_cnt,v_cnt;always@(posedge clk or negedge reset_n)if(!reset_n)h_cnt <= 12'd0;else if(h_cnt == img_x_start + img_width - 1)h_cnt <= 12'd0;else h_cnt <= h_cnt + 12'd1;always@(posedge clk or negedge reset_n)if(!reset_n) v_cnt <= 12'd0;else if((v_cnt == img_y_start + img_height - 1) && (h_cnt == img_x_start + img_width - 1))v_cnt <= 12'd0;else if(h_cnt == img_x_start + img_width - 1)v_cnt <= v_cnt + 12'd1;else v_cnt <= v_cnt;assign wr_ready = (h_cnt >= img_x_start) && (v_cnt >= img_y_start);always@(posedge clk or negedge reset_n)if(!reset_n)valid_o <= 1'd0;else if((h_cnt < img_width) && (v_cnt < img_height))valid_o <= 1'd1;else valid_o <= 1'd0;always@(posedge clk or negedge reset_n)if(!reset_n)img_data_o <= 24'd0;else if((h_cnt < img_width) && (v_cnt < img_height) && (wr_ready))img_data_o <= img_data_i;else img_data_o <= 24'd0;endmodule

        微调读写测试文件后,仿真出来的图像(与matlab仿真结果一致):

        (6)FPGA实现

  • 查看配置进程:report_property -all [get_runs impl_1]
  1. 写入DDR3部分不需要修改,可以沿用,但是读取部分需要修改,首先是结束地址,需要适配新的y轴偏移量
    axi_ddr3_top    axi_ddr3_top_inst
    (.ddr3_clk            (clk_320M              ),.reset_n             (rst_n                 ),.pingpang            (1'd0                  ),.ui_clk              (ui_clk                ),.ui_rst              (ui_rst                ),.wr_b_addr           (32'd0                 ),.wr_e_addr           (IMG_LENGTH*IMG_WIDE*4 ),.wr_clk              (clk                   ),.data_wren           (data_wren             ),.data_wr             (data_wr               ),.wr_rst              (1'd0                  ),.rd_b_addr           (32'd0                 ),.rd_e_addr           (IMG_LENGTH*(IMG_WIDE-Y_OFFSET+1)*4 ),.rd_clk              (clk_vga_2             ),.data_rden           (lie >= Y_OFFSET       ),.data_rd             (data_rd               ),.rd_rst              (1'd0                  ),.read_enable         (1'd1                  ),.rd_data_valid       (),.ddr3_addr           (ddr3_addr             ),.ddr3_ba             (ddr3_ba               ),.ddr3_cas_n          (ddr3_cas_n            ),.ddr3_ck_n           (ddr3_ck_n             ),.ddr3_ck_p           (ddr3_ck_p             ),.ddr3_cke            (ddr3_cke              ),.ddr3_ras_n          (ddr3_ras_n            ),.ddr3_reset_n        (ddr3_reset_n          ),.ddr3_we_n           (ddr3_we_n             ),.ddr3_dq             (ddr3_dq               ),.ddr3_dqs_n          (ddr3_dqs_n            ),.ddr3_dqs_p          (ddr3_dqs_p            ),.init_calib_complete (init_calib_complete   ),.ddr3_cs_n           (ddr3_cs_n             ),.ddr3_dm             (ddr3_dm               ),.ddr3_odt            (ddr3_odt              )  
    );
  2. 缓存行数据,使用一个24位,深度位2048的双口RAM去存储从DDR3中读出来的数据,然后在VGA模块扫描到对应位置时输出,即可。

    hang_ram_2048  hang_ram_2048_inst 
    (.clka       (clk_vga_2                  ), .ena        (1'd1                       ), .wea        (lie >= Y_OFFSET && reading ), .addra      (buf_wr_addr                ), .dina       (line_buffer                ), .clkb       (clk_vga                    ), .enb        (hang >= X_OFFSET           ), .addrb      (buf_rd_addr                ), .doutb      (ram_dout                   )  
    );always @(posedge clk_vga_2 or negedge init_rst_n) beginif(!init_rst_n) beginlast_data_rd <= 16'd0;buf_wr_addr <= 11'd0;reading <= 1'b0;line_buffer <= 24'd0;endelse beginif(lie >= Y_OFFSET) beginif(!reading) begin  // 第一次读取last_data_rd <= data_rd;reading <= 1'b1;endelse begin  // 第二次读取line_buffer <= {last_data_rd, data_rd[15:8]};buf_wr_addr <= buf_wr_addr + 11'd1;reading <= 1'b0;endendelse beginbuf_wr_addr <= 11'd0;reading <= 1'd0;endend
    end// 行缓存读取控制,在这里实现偏移
    always @(posedge clk_vga or negedge init_rst_n) beginif(!init_rst_n) buf_rd_addr <= 11'd0;else beginif(display_valid)buf_rd_addr <= buf_rd_addr + 1'd1;else buf_rd_addr <= 11'd0;end
    endassign display_valid = (hang >= X_OFFSET)&&(lie >= Y_OFFSET);  
  3. 最终现象如下:

相关文章:

数字图像处理(15):图像平移

&#xff08;1&#xff09;图像平移的基本原理&#xff1a;计算每个像素点的移动向量&#xff0c;并将这些像素按照指定的方向和距离进行移动。 &#xff08;2&#xff09;平移向量包括水平和垂直分量&#xff0c;可以表示为&#xff08;dx&#xff0c;dy&#xff09;&#xff…...

高级java每日一道面试题-2024年12月08日-JVM篇-什么是类加载器?

如果有遗漏,评论区告诉我进行补充 面试官: 什么是类加载器? 我回答: 在Java高级面试中&#xff0c;类加载器&#xff08;ClassLoader&#xff09;是一个重要的概念&#xff0c;它涉及到Java类的加载和初始化机制。以下是对类加载器的详细解释&#xff1a; 定义与作用 类加…...

JAVA子类的无参构造器中第一行的super

在 Java 中&#xff0c;子类的构造器是否需要显式调用 super 取决于父类&#xff08;超类&#xff09;的构造器。 如果父类有一个无参构造器&#xff1a; 如果父类有一个无参构造器&#xff0c;那么子类的构造器可以不显式调用 super。在这种情况下&#xff0c;如果子类构造器的…...

mysql程序介绍,选项介绍(常用选项,指定选项的方式,特性),命令介绍(查看,部分命令),从sql文件执行sql语句的两种方法

目录 mysql程序 介绍 选项 介绍 常用选项 指定选项的方式 ​编辑配置文件 环境变量 选项特性 指定选项 选项名 选项值 命令 介绍 查看客户端命令 tee/notee prompt source system help contents 从.sql文件执行sql语句 介绍 方式 source 从外部直接导入…...

Unity教程(十九)战斗系统 受击反馈

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程&#xff08;零&#xff09;Unity和VS的使用相关内容 Unity教程&#xff08;一&#xff09;开始学习状态机 Unity教程&#xff08;二&#xff09;角色移动的实现 Unity教程&#xff08;三&#xff09;角色跳跃的实现 Unity教程&…...

lanqiaoOJ 3744:小蓝的智慧拼图购物 ← pair+优先队列

【题目来源】https://www.lanqiao.cn/problems/3744/learning/【题目描述】 在小蓝的生日那天&#xff0c;他得到了一个由神秘人赠送的拼图游戏&#xff0c;每个拼图都有其特定的价值和相应的优惠券。小蓝决定要买下所有的拼图&#xff0c;但他希望能尽可能地节省花费。小蓝手中…...

Spring Boot教程之二十一:文件处理

Spring Boot – 文件处理 Spring Boot 是一种流行的、基于 Spring 的开源框架&#xff0c;用于开发强大的 Web 应用程序和微服务。由于它建立在 Spring 框架之上&#xff0c;因此它不仅具有 Spring 的所有功能&#xff0c;而且还包括某些特殊功能&#xff0c;例如自动配置、健康…...

【Linux】Linux的基本常识+指令

目录 1. 整体学习思维导图 2. 常见快捷键操作 3. 基本指令 pwd指令 whoami指令 ls 指令 touch指令 cd 指令 Stat 指令 mkdir 指令 alias指令 nano 指令 rmdir 和 rm 指令 man 指令手册 cp 命令 cat/echo/tac 指令 mv 指令 less 指令 head/tail 指令 date…...

Rocky Linux 9.3系统搭建Slurm环境【笔记】

实践环境:Rocky Linux 9.3 [root@m1 ~]# cat /etc/redhat-release Rocky Linux release 9.3 (Blue Onyx) [root@m1 ~]# uname -r 5.14.0-362.8.1.el9_3.x86_64 [root@m1 ~]#主机名和IP ● 控制节点m1:10.1.1.10 ● 计算节点c1:10.1.1.11 ● 计算节点c2:10.1.1.12 一、…...

原生微信小程序使用原子化tailwindcss

这里使用了第三方库来实现:https://weapp-tw.icebreaker.top/ 官方配置步骤一: https://weapp-tw.icebreaker.top/docs/quick-start/native/install 官方配置步骤二:https://weapp-tw.icebreaker.top/docs/quick-start/native/install-plugin 我下面的操作步骤跟官方步骤…...

《掌握Nmap:全面解析网络扫描与安全检测的终极指南》

 nmap # 简介&#xff08;帮助&#xff09; 用法&#xff1a;nmap [扫描类型] [选项] {目标指定内容} 简介&#xff08;帮助&#xff09; 用法&#xff1a;nmap [扫描类型] [选项] {目标指定内容} 一、目标指定&#xff1a; 可以传入主机名、IP 地址、网络等。 例如&a…...

k8s-Informer概要解析(2)

Client-go 主要用在 k8s 控制器中 什么是 k8s Informer Informer 负责与 kubernetes APIServer 进行 Watch 操作&#xff0c;Watch 的资源&#xff0c;可以是 kubernetes 内置资源对象&#xff0c;也可以 CRD。 Informer 是一个带有本地缓存以及索引机制的核心工具包&#x…...

UE5基本数据类型

bool: 表示布尔值&#xff0c;只有两个取值&#xff1a;true 或 false&#xff0c;用于表示逻辑条件。int8: 表示 8 位的有符号整数&#xff0c;范围是 −128−128 到 127127。uint8: 表示 8 位的无符号整数&#xff0c;范围是 00 到 255255。int16: 表示 16 位的有符号整数&am…...

Next.js 系统性教学:中间件与国际化功能深入剖析

更多有关Next.js教程&#xff0c;请查阅&#xff1a; 【目录】Next.js 独立开发系列教程-CSDN博客 目录 一、Next.js 中间件 (Middleware) 功能解析 1.1 什么是中间件&#xff1f; 1.2 Next.js 中间件的工作机制 1.3 中间件的功能应用 身份验证与授权 请求重定向 修改请…...

鸿蒙HarmonyOS元服务应用开发实战完全指导

内容提要 元服务概述 元服务开发流程 第一个元服务开发 元服务部署与运行 一、服务概述 1、什么是元服务 在万物互联时代&#xff0c;人均持有设备量不断攀升&#xff0c;设备种类和使用场景更加多样&#xff0c;使得应用开发、应用入口变得更加复杂。在此背景下&#x…...

CT中的2D、MPR、VR渲染、高级临床功能

CT中的2D、MPR、VR渲染 在CT&#xff08;计算机断层扫描&#xff09;中&#xff0c;2D、MPR&#xff08;多平面重建&#xff09;、VR&#xff08;体积渲染&#xff09;是不同的图像显示和处理技术&#xff0c;它们各自有独特的用途和优势。下面分别介绍这三种技术&#xff1a;…...

利用docker-compose来搭建flink集群

1.前期准备 &#xff08;1&#xff09;把docker&#xff0c;docker-compose&#xff0c;kafka集群安装配置好 参考文章&#xff1a; 利用docker搭建kafka集群并且进行相应的实践-CSDN博客 这篇文章里面有另外两篇文章的链接&#xff0c;点进去就能够看到 &#xff08;2&…...

力扣打卡10:K个一组翻转链表

链接&#xff1a;25. K 个一组翻转链表 - 力扣&#xff08;LeetCode&#xff09; 这道题需要在链表上&#xff0c;每k个为一组&#xff0c;翻转&#xff0c;链接。 乍一看好像比较容易&#xff0c;其实有很多细节。比如每一组反转后怎么找到上一组的新尾&#xff0c;怎么找到…...

深度学习详解

深度学习&#xff08;Deep Learning&#xff0c;DL&#xff09;是机器学习&#xff08;Machine Learning&#xff0c;ML&#xff09;中的一个子领域&#xff0c;利用多层次&#xff08;深层&#xff09;神经网络来自动从数据中提取特征和规律&#xff0c;模仿人脑的神经系统来进…...

鸿蒙分享(一):添加模块,修改app名称图标

码仓库&#xff1a;https://gitee.com/linguanzhong/share_harmonyos 鸿蒙api:12 新建公共模块common 在entry的oh-package.json5添加dependencies&#xff0c;引入common模块 "dependencies": {"common": "file:../common" } 修改app名称&…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...