使用 FAISS 进行高效相似性搜索:从文本检索到动态数据处理
-
在现代数据科学和人工智能应用中,处理大量高维数据并从中找到相似项是一个常见任务。无论是在推荐系统、搜索引擎,还是在自然语言处理应用中,如何高效地进行相似性搜索(Similarity Search)一直是一个挑战。为了解决这个问题,FAISS(Facebook AI Similarity Search)应运而生,成为了处理和检索高维数据的一个重要工具。
-
在本文中,我们将介绍FAISS的基本概念、如何使用它进行相似性搜索、以及如何处理动态数据的常见问题。
文章目录
- 什么是 FAISS?
- FAISS 的核心特点
- FAISS 的常见应用
- 如何使用 FAISS 进行相似性搜索?
- 步骤 1: 文本嵌入
- 步骤 2: 创建 FAISS 索引
- 步骤 3: 查询
- 示例代码(Python):
- 示例输出:
- 如何处理动态数据?
- 添加新数据
- 示例代码(添加新数据):
- 删除数据
- 动态数据管理
- 总结
什么是 FAISS?
FAISS(Facebook AI Similarity Search)是由Facebook AI Research团队开发的一个开源库,专门用于高效的相似性搜索和聚类任务。它的设计目标是处理大规模数据集和高维空间的向量检索,广泛应用于推荐系统、搜索引擎和自然语言处理等领域。
FAISS 的核心特点
- 高效性能:FAISS通过优化算法,使得对大规模数据集的相似性搜索变得快速且高效。
- 索引方法多样:支持多种索引方式,包括精确检索(Flat Index)和近似最近邻(ANN)方法。
- GPU 加速:支持GPU加速,能进一步提高查询速度,特别是在处理非常大规模的数据时。
- 易于扩展和灵活性:可以处理千万级别的向量,支持不同的距离度量(如L2距离、余弦相似度等)。
FAISS 的常见应用
- 推荐系统:根据用户的历史行为推荐相似的产品或内容。
- 搜索引擎:根据查询内容检索最相关的文档或图像。
- 自然语言处理:在NLP中使用嵌入向量查找与查询句子相似的句子或文档。
如何使用 FAISS 进行相似性搜索?
假设我们有一系列句子,并且想要根据一个查询句子找到最相关的内容。以下是使用 FAISS 进行文本相似性搜索的一个简单示例。
步骤 1: 文本嵌入
首先,我们需要将句子转化为向量(嵌入)。这可以通过使用如Sentence-Transformers等模型来完成。
步骤 2: 创建 FAISS 索引
将生成的嵌入向量添加到 FAISS 索引中。FAISS 会为我们创建一个数据结构,能够快速检索相似向量。
步骤 3: 查询
我们可以输入一个查询句子,FAISS 会返回最相似的句子,通常基于L2距离(欧几里得距离)或余弦相似度。
示例代码(Python):
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np# Step 1: Prepare your data
sentences = ["The cat sat on the mat.","Dogs are great pets.","I love programming in Python.","The weather is sunny today.","I enjoy reading books about AI."
]
query = "What are some benefits of having a dog?"# Step 2: Convert sentences to embeddings
model = SentenceTransformer('all-MiniLM-L6-v2')
sentence_embeddings = model.encode(sentences)
query_embedding = model.encode([query])# Step 3: Set up FAISS index
dimension = sentence_embeddings.shape[1] # Dimensionality of embeddings
index = faiss.IndexFlatL2(dimension) # L2 distance metric
index.add(np.array(sentence_embeddings)) # Add sentence embeddings to the index# Step 4: Perform a search
k = 3 # Number of nearest neighbors to retrieve
distances, indices = index.search(np.array(query_embedding), k)# Step 5: Display the results
print("Query:", query)
print("\nMost relevant sentences:")
for i, idx in enumerate(indices[0]):print(f"{i+1}. {sentences[idx]} (Distance: {distances[0][i]:.4f})")
示例输出:
Copy code
Query: What are some benefits of having a dog?Most relevant sentences:
1. Dogs are great pets. (Distance: 0.3215)
2. The cat sat on the mat. (Distance: 0.5432)
3. I enjoy reading books about AI. (Distance: 0.7891)
如何处理动态数据?
- 在很多应用中,数据是动态变化的。例如,新的句子不断被添加,或者已有的句子被删除。在这种情况下,我们需要能够动态更新 FAISS 索引。
添加新数据
- FAISS 允许你不断地向现有索引添加新的向量,而不需要重新构建整个索引。这对于大规模数据集来说非常有用。
示例代码(添加新数据):
# Add a new sentence to the index
new_sentence = "I enjoy hiking in the mountains."
new_embedding = model.encode([new_sentence])# Add the new sentence to the index
index.add(np.array(new_embedding)) # Add embedding of new sentence# Add the sentence to the list
sentences.append(new_sentence)
删除数据
-
FAISS 本身对于删除数据的支持较为有限。对于简单的 IndexFlatL2 索引,删除数据项通常意味着需要重建整个索引。但在一些复杂的索引类型(如 IVF 或 PQ)中,FAISS 提供了 remove_ids() 方法来删除特定的向量。
-
如果删除频繁,重建索引是比较常见的做法:
# Rebuild the index after removing a sentence (for example, at index 1)
sentences_to_keep = [s for i, s in enumerate(sentences) if i != 1]
index = rebuild_index(sentences_to_keep)
动态数据管理
- 对于大规模或频繁变化的场景,可以考虑以下几种方法:
- 增量添加:通过 add() 方法,动态地向索引中添加新的向量。
- 定期重建索引:如果删除操作很频繁,或者数据量变化较大,定期重建索引会更高效。
- 使用更复杂的索引类型:如 IndexIVF(倒排文件索引)或 IndexPQ(产品量化索引),它们提供了更高效的更新和删除机制。
总结
- FAISS 是一个高效的工具,专门用于处理和检索高维嵌入向量,它能够帮助我们在海量数据中快速找到相似项。通过与嵌入模型(如 Sentence-BERT、BERT 等)结合使用,FAISS 可以大幅提升相似性搜索的性能。
- 对于动态数据,FAISS 也提供了灵活的更新和查询功能,虽然在频繁删除的场景下可能需要重建索引,但通过合理的使用方式,可以高效地处理大规模数据的检索任务。
相关文章:
使用 FAISS 进行高效相似性搜索:从文本检索到动态数据处理
在现代数据科学和人工智能应用中,处理大量高维数据并从中找到相似项是一个常见任务。无论是在推荐系统、搜索引擎,还是在自然语言处理应用中,如何高效地进行相似性搜索(Similarity Search)一直是一个挑战。为了解决这个…...
执行“go mod tidy”遇到“misbehavior”错误
执行“go mod tidy”报错下错误,执行“go clean -modcache”和删除“go env GOMODCACHE”指定目录均无效: SECURITY ERROR go.sum database server misbehavior detected!old database:go.sum database tree3397826xyyhzdyAOat5li/EXx/MK1gONQf3LAGqArh…...
深入详解人工智能机器学习:强化学习
目录 强化学习概述 强化学习的基本概念 定义 关键组件 强化学习过程 常用算法 应用示例 示例代码 代码解释 应用场景 强化学习核心概念和底层原理 核心概念 底层原理 总结 强化学习概述 强化学习(Reinforcement Learning, RL)是机器学习中的…...
力扣打卡11:合并区间(比较器内联,引用传参的优化)
链接:56. 合并区间 - 力扣(LeetCode) 这道题可以用贪心。 首先将intervals的left(intervals[i][0])排序。 然后拿出第一个区间,比较后面相邻的区间: 当前right<后left,表示下一…...
《 bilibili-起步级 用户模块接口文档 经验分享 ~》
bilibili - 用户模块接口文档 - 经验分享 ~ 数据库er关系图 : 迅速跳转链接 枚举码实体类 : 迅速跳转链接 使用apifox.json格式导入接口文档 步骤 登录Apifox。新建文件, 将代码粘贴到该文件, 并更改后缀为 .apifox.json进入项目,点击“导入”。选择“Apifox”格式…...
AES 与 SM4 加密算法:深度解析与对比
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,…...
启保停电路如何接到PLC
传感器:NPN :棕:正 蓝:负 黑:信号 1M——>24V PNP:1M——>0V...
HTTP multipart/form-data 请求
序言 最近在写项目的过程中有一个需求是利用 HTTP 协议传输图片和视频,经过查询方法相应的方法发现使用 multipart/form-data 的方式,这是最常见处理二进制文件的表单编码类型。 学习了一下午,现在总结一下使用的方法和相关的知识点&#x…...
配置服务器的免密登录
在服务器中配置别名和免密登录 如果没有生成过公钥和密钥 ssh-keygen然后就生成了公钥和密钥,下一步进入.ssh文件夹 cd .ssh/可以看到文件夹中会多出来三个文件 id_rsa:密钥id_rsa.pub:公钥known_hosts:A通过ssh首次连接到B&am…...
普通遥控电动遮阳雨棚怎么接入米家并用苹果手机Siri控制
环境: 遥控电动遮阳雨棚 无线射频拷贝器 米家APP 问题描述: 普通遥控电动遮阳雨棚怎么接入米家并用苹果手机Siri控制 解决方案: 1.先看看遥控器射频参数,有些在里面板子上,要拆开才能看到,我这是433的 2.到网店…...
两种不同简缩极化的六个方程
方程1 (3*A*(b - a*1i 1) - A*((c d*1i)*(f1 f2*1i)*1i - (c d*1i)^2))*(a - b*1i)*1i 3*A*(b - a*1i 1) 2*(A*(c f2 d*1i - f1*1i) A*(c d*1i - (a b*1i)*(c d*1i)*1i))*(c - d*1i) (A*(c f2 d*1i - f1*1i) A*(c d*1i - (a b*1i)*(c d*1i)*1i))*(f1 - f2…...
环形缓冲区(Ring Buffer):概念、功能、使用场景与实现
一、概念 环形缓冲区(Ring Buffer),又称循环缓冲区,是一种用于数据缓冲的数据结构。其核心思想是将缓冲区视为一个环形结构,当数据写入到缓冲区的末尾时,会自动回绕到缓冲区的开头继续写入,形成…...
大连理工大学数据结构2003年硕士入学试题
大连理工大学2003年硕士入学试题 数据结构部分(共75分) 一、回答下列问题(20分) 1.循环队列用数组A[0..m—1)存放其数据元素。设tail指向其实际的队尾,front指向其实际队首的前一个位置,则当前队列中的数据元素有多少个…...
Master EDI 项目需求分析
Master Electronics 通过其全球分销网络,支持多种采购需求,确保能够为客户提供可靠的元件供应链解决方案,同时为快速高效的与全球伙伴建立合作,Master 选择通过EDI来实现与交易伙伴间的数据传输。 EDI为交易伙伴之间建立了一个安…...
图海寻径——图相关算法的奇幻探索之旅
一、图的表示 1. 邻接矩阵 (Adjacency Matrix) #include <iostream> #include <vector> #include <queue> #include <limits>using namespace std;class GraphMatrix { private:int numVertices;vector<vector<int>> adjMatrix;const st…...
亚马逊云科技re:Invent:生成式AI与全球布局
作为全球云计算和人工智能领域一年一度的顶级盛宴,亚马逊云科技2024 re:Invent全球大会吸引了超过6万名现场观众以及40多万名线上参会者。而大会上生成式AI的相关话题和内容,也成为了所有观众关注的焦点。 大会期间,亚马逊云科技全球服务副总…...
Android 因为混淆文件配置,打release包提示running R8问题处理
一、报错信息 Missing classes detected while running R8. Please add the missing classes or apply additional keep rules that are generated in E:\workplace\xxxxxx\app\build\outputs\mapping\release\missing_rules.txt. Missing class org.mediakit.R$layout (refer…...
20241209给Ubuntu20.04系统的的交换分区增加为20GB的步骤
20241209给Ubuntu20.04系统的的交换分区增加为20GB的步骤 2024/12/9 21:10 缘起,编译中科创达的高通CM6125模块的Android10的时候,老报错。 编译环境可以编译荣品的RK3566的Android13/Buildroot。 以前荣品的RK3566的Android13的编译环境是可以编译通CM6…...
Centos7环境下nifi单机部署
Centos7环境下nifi单机部署 前言一、安装Nifi1.1 下载并解压1.2 修改配置文件 二、启动Nifi程序三、Nifi的简单使用3.1 文件移动3.2 本地文件传到HDFS 参考博客 前言 本以为在服务器上部署nifi很简单,跟着教程走就好,但是并没有成功,可能是因…...
如何通过轻易云实现金蝶云星空与旺店通数据集成
案例分享:柏为金蝶退料申请退料开单08.03 在企业的供应链管理中,数据的准确性和实时性至关重要。本文将重点介绍如何通过轻易云数据集成平台,将金蝶云星空的数据高效集成到旺店通旗舰奇门系统中,以实现柏为金蝶退料申请退料开单0…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
