当前位置: 首页 > news >正文

日本IT-需要掌握哪些技术框架?一篇通读

在日本从事IT工作,需要掌握的技术框架与全球范围内的趋势相似,但也有一些特定的技术和框架在日本更为流行。以下是一些在日本IT行业中常用的技术框架:

Java后端

  • Java语言:Java在日本是一门非常稳定且受欢迎的编程语言,很多日本公司的服务都是基于Java开发的,例如DMM.com、楽天市場等。
  • Spring Framework:这是日本使用最多的Java后端框架。Spring Framework提供了全面的编程和配置模型,支持Java应用的各个方面。

Python

  • 数据领域:Python在日本的数据领域非常受欢迎,包括数据爬虫、数据分析、RPA(机器人流程自动化)以及机器学习。
    • 数据爬虫:虽然日本没有固定的数据爬虫工具,但scrapy和pyspider的使用比例相近。
    • 数据分析:日本主要使用pandas和numpy进行数据分析,对于大数据处理,则常使用pyspark+hadoop。
    • RPA:桌面应用多使用pywinauto,网络应用则以selenium为主。
    • 机器学习:自从tensorflow 2.0集成了keras以后,企业中使用tensorflow的场景较多。但在研究所和学校,pytorch仍受到研究者的青睐。
  • 后端服务:少量公司使用Python做后端服务开发,轻量的微服务更倾向于使用flask,而django则更适合系统化的应用。

Web前端

  • Vue、React、Angular:这三个框架在日本的使用与世界其他地方大致相同。根据招聘网站的数据,React的职位数较多,其次是Vue,而Angular的职位数相对较少。但三个框架的薪资范围大致相近。

数据库与云服务

  • 数据库:日本开发所使用的数据库基本都上云了,主要使用的是谷歌的GCP(Google Cloud Platform)和亚马逊的AWS(Amazon Web Services)。关系型数据库分别对应BigQuery(GCP)和RDS(AWS),NoSQL则为Firestore(GCP)和DynamoDB(AWS)。
  • 云服务:日本IT行业也广泛采用云服务,包括谷歌GCP和亚马逊AWS提供的各种服务。

其他技术

  • Docker、K8S、微服务:这些技术在日本IT行业的核心岗位中也非常常见。
  • SAP:对于希望进入SAP行业的IT从业者,需要掌握SAP相关的技术和框架,同时日语水平也要求较高。

总的来说,在日本从事IT工作,需要掌握的技术框架与全球趋势相似,但也有一些特定的技术和框架在日本更为流行。同时,由于日本IT行业的不断发展,新的技术和框架也在不断涌现,因此持续学习和更新技能是非常重要的。

相关文章:

日本IT-需要掌握哪些技术框架?一篇通读

在日本从事IT工作,需要掌握的技术框架与全球范围内的趋势相似,但也有一些特定的技术和框架在日本更为流行。以下是一些在日本IT行业中常用的技术框架: Java后端 Java语言:Java在日本是一门非常稳定且受欢迎的编程语言&#xff0…...

错题:Linux C语言

题目&#xff1a;手写代码&#xff1a;判断一个数&#xff08;int类型的整数&#xff09;中有有多少1 题目&#xff1a;手写代码&#xff1a;判断一个数(转换成二进制表示时)有几个1 #include <stdio.h> int main(int argc, const char *argv[]) { //判断一个数&#xf…...

多表设计-一对多一对多-外键

一.多表设计概述&#xff1a; 二.一对多&#xff1a; 1.需求&#xff1a; 根据 页面原型 及 需求文档&#xff0c;完成部门及员工模块的表结构设计 -->部门和员工就是一对多&#xff0c;因为一个部门下会有多个员工&#xff0c;但一个员工只归属一个部门 2.页面原型&…...

Ch1:古今的manipulation与仿真、ROS和Drake介绍

不同的机器人研究与仿真 以前&#xff08;15年左右&#xff09;只能用仿真环境训练行走机器人&#xff0c;对于manipulation任务&#xff0c;有两个问题&#xff1a;1&#xff09;相机不真实&#xff1b;2&#xff09;接触行为太复杂。 I remember just a few years ago (~201…...

JAVA秋招面试题精选-第一天总结

目录 分栏简介&#xff1a; 问题一&#xff1a;订单表每天新增500W条数据&#xff0c;分库分表应该怎么设计&#xff1f; 问题难度以及频率&#xff1a; 问题导向&#xff1a; 满分答案&#xff1a; 举一反三&#xff1a; 问题总结&#xff1a; 问题二&#xff1a;解释…...

服务器卸载安装的 Node.js

卸载安装的 Node.js 版本&#xff0c;具体步骤取决于你是通过包管理器&#xff08;如 yum 或 dnf&#xff09;安装的&#xff0c;还是通过 nvm (Node Version Manager) 安装的。以下是针对这两种情况的指南。 通过包管理器卸载 Node.js 如果你是通过 yum 或 dnf 安装的 Node.…...

深度解析 Ansible:核心组件、配置、Playbook 全流程与 YAML 奥秘(下)

文章目录 六、playbook运行playbook方式Playbook VS ShellScripts忽略错误 ignore_errorshandlers和notify结合使用触发条件playbook中tags的使用playbook中变量的使用invertory参数模板templates迭代与条件判断迭代&#xff1a;with_items迭代嵌套子变量roles 六、playbook 运…...

使用go生成、识别二维码

1、下载 # 创建目录 # 进入目录 # 执行 go mod init xxx 命令&#xff08;即&#xff1a;在当前目录初始化创建一个模块&#xff09;# 下载gozxing go get github.com/makiuchi-d/gozxing 2、生成二维码 package mainimport ("image/png""os""gith…...

LLama系列模型简要概述

LLama-1&#xff08;7B, 13B, 33B, 65B参数量&#xff1b;1.4T tokens训练数据量&#xff09; 要做真正Open的AI Efficient&#xff1a;同等预算下&#xff0c;增大训练数据&#xff0c;比增大模型参数量&#xff0c;效果要更好 训练数据&#xff1a; 书、Wiki这种量少、质量高…...

2022 年“泰迪杯”数据分析技能赛A 题竞赛作品的自动评判

2022 年“泰迪杯”数据分析技能赛A 题竞赛作品的自动评判 完整代码请私聊 博主 一、背景 在各类学科竞赛中&#xff0c;常常要求参赛者提交 Excel 或/和 PDF 格式的竞赛作品。 本赛题以某届数据分析竞赛作品的评阅为背景&#xff0c;要求参赛者根据给定的评分准则和标准答案&a…...

MYSQL表联接算法深入研究

在关系型数据库中&#xff0c;表联接是一种常见的操作&#xff0c;它使得我们可以根据不同的条件将多个表中的数据进行连接。而MySQL作为一种常用的关系型数据库&#xff0c;其表联接算法包括NLJ、BNL、BKA、BNLH等多种&#xff0c;在实际应用中选择不同的算法还需要考虑到数据…...

markdown中画图功能mermaid

mermaid Mermaid 是一种开源的可交互式的数据可视化库&#xff0c;它使用 Markdown 标记语言来生成图表和流程图。它通常用于生成网站或文档中的图表。Mermaid 不属于任何公司&#xff0c;而是一个由社区开发和维护的开源项目。 官方网站&#xff1a; https://mermaid-js.git…...

SCI论文丨机器学习与深度学习论文

目录 第一章、ChatGPT-4o使用方法与技巧 第二章、ChatGPT-4o辅助文献检索、总结与分析 第三章、ChatGPT-4o辅助学术论文选题、创新点挖掘与实验方案设计 第四章、ChatGPT-4o辅助学术论文开题与大纲生成 第五章、ChatGPT-4o辅助学术论文写作马拉松活动介绍 第六章、ChatGPT…...

linux系统编程(二)

1、fcntl #include <unistd.h> int fcntl(int fd, int cmd, ...)fcntl用于控制文件描述符&#xff0c;该系统调用有很多功能&#xff0c;功能用cmd来控制&#xff0c;fcntl后面的参数根据cmd来填充。 我们常用的cmd有&#xff1a; F_GETFL&#xff1a;获取文件状态标志…...

uni-app登录界面样式

非常简洁的登录、注册界面模板&#xff0c;使用uni-app编写&#xff0c;直接复制粘贴即可&#xff0c;无任何引用&#xff0c;全部公开。 废话不多说&#xff0c;代码如下&#xff1a; login.vue文件 <template><view class"screen"><view class"…...

windows C#-定义抽象属性

以下示例演示如何定义抽象属性。 抽象属性声明不提供属性访问器的实现&#xff0c;它声明该类支持属性&#xff0c;而将访问器实现留给派生类。 以下示例演示如何实现从基类继承抽象属性。 此示例由三个文件组成&#xff0c;其中每个文件都单独编译&#xff0c;产生的程序集由…...

ERROR: KeeperErrorCode = NoNode for /hbase/master

原因分析 通过上面的情景模拟&#xff0c;我们可以看到报错的原因在于zookeeper中出现问题&#xff0c;可能是zookeeper中的/hbase/master被删除&#xff0c;或者是在hbase集群启动之后重新安装了zookeeper&#xff0c;导致zookeeper中的/hbase/master节点数据异常。 1. 停止…...

Deepin 23 踩坑记

&#xff08;首发地址&#xff1a;学习日记 https://www.learndiary.com/2024/12/deepin23-questions/&#xff09; Deepin 23 是由统信软件技术有限公司牵头开发一款开源 Linux 桌面操作系统&#xff08;参考链接1&#xff09;&#xff0c;从2022年发布预览版&#xff08;参考…...

mysql笔记——索引

索引 InnoDB采用了B树索引结构。 相比于二叉树&#xff0c;层级更少&#xff0c;搜索效率高。 B树中叶子节点和非叶节点都会存储数据&#xff0c;导致段页式存储中一页存储的键值减少&#xff0c;指针也会减少&#xff0c;要同样保存大量数据&#xff0c;只能增加树的高度&a…...

考研数据结构——简答题总结

数据结构的4种基本结构及特点&#xff1a; 数组&#xff08;Array&#xff09;&#xff1a; 特点&#xff1a;数组是一种线性数据结构&#xff0c;使用连续的内存空间存储元素&#xff0c;可以通过索引直接访问任意位置的元素。优点&#xff1a;访问速度快&#xff0c;因为元…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...