[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
理论基础
题型
- 动归基础(这一节就是基础题)
- 背包问题
- 打家劫舍
- 股票问题
- 子序列问题
动态规划五部曲
- 确定dp数组及其下标的含义
- 确定递推公式
- dp数组如何初始化
- 遍历顺序
- 打印dp数组
509. 斐波那契数
简单~
- dp数组及下标含义: dp[i]表示第i各斐波那契数,值为dp[i]
- 递推公式:dp[i] = dp[i-1] -dp[i-2]
- dp数组如何初始化:dp[0] = 0; dp[1] = 1;题目描述中有敌意
- 遍历顺序:从前往后
- 打印dp数组
当前位置的值只与该位置的前两个数值有关,只需要维护长度为2的数组。
class Solution {
public:int fib(int n) {if(n==0 || n==1) return n;vector<int> dp(2);dp[0] = 0; dp[1] = 1;for(int i=2; i<=n; i++){int sum = dp[1] + dp[0];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};
class Solution {public int fib(int n) {if(n == 0 || n == 1) return n;int[] dp = new int[2];dp[0] = 0; dp[1] = 1;for(int i = 2; i<=n; i++){int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
}
class Solution(object):def fib(self, n):""":type n: int:rtype: int"""if n == 0 or n == 1:return ndp = [0,1]for i in range(2, n+1):sum_ = dp[0] + dp[1]dp[0] = dp[1]dp[1] = sum_return dp[1]
参考文章
- https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
70. 爬楼梯
要明白如果爬n层有两种情况: 一种是从n-2层迈两步上来的,一种是从n-1层迈一步上来的。所以到达第n层的方法数量=到达第n-2层的方法数+到达第n-1层的方法数。
- dp数组及其下标含义 dp[i] 表示到达第i层的方法数量
- 递推公式 dp[i] = dp[i-1] + dp[i-2]
- dp数组初始化 dp[1] = 1 dp[2] = 2,0没有实际意义
- 遍历顺序:从前往后
- 打印dp数组
当前位置数值只与当前位置前2个位置数值有关,只需要维护长度为2的数组,但是0没有实际意义,为了实现更加明确的初始化我们定义长度为3的数组,0这个位置不进行初始化。
class Solution {
public:int climbStairs(int n) {if(n==1 || n==2) return n;vector<int> dp(3);dp[1] = 1;//空出0来因为没有意义dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};
class Solution {public int climbStairs(int n) {if(n == 1 || n == 2) return n;int[] dp = new int[3];dp[1] = 1; dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
}
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""if n == 1 or n == 2:return ndp = [None, 1, 2]for i in range(3, n+1):sum_ = dp[1] + dp[2]dp[1] = dp[2]dp[2] = sum_return dp[2]
参考文章
- https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
746. 使用最小花费爬楼梯
Note:注意题目描述,该位置不花费体力,往上跳花费体力。并且cost的长度是顶楼。
- dp数组及其下标含义:dp[i] 到达第i层所需要的最小花费为dp[i]
- 递推公式: dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
- dp数组如何初始化: dp[0]=0;dp[1]=0;//因为当前位置不花费,向上跳才花费所以都初始化为0
- 遍历顺序:从前往后
- 打印dp数组
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {if(cost.size()<2) return 0;vector<int> dp(2);for(int i = 2; i <= cost.size(); i++){int minCost = min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
};
class Solution {public int minCostClimbingStairs(int[] cost) {if(cost.length<2) return 0;int[] dp = new int[]{0, 0};for(int i = 2; i <= cost.length; i++){int minCost = Math.min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
}
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""if len(cost)<2:return 0dp = [0, 0]for i in range(2, len(cost)+1):minCost = min(dp[0]+cost[i-2], dp[1]+cost[i-1])dp[0] = dp[1]dp[1] = minCostreturn dp[1]
参考文章
- https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html
相关文章:
[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
理论基础 题型 动归基础(这一节就是基础题)背包问题打家劫舍股票问题子序列问题 动态规划五部曲 确定dp数组及其下标的含义确定递推公式dp数组如何初始化遍历顺序打印dp数组 509. 斐波那契数 简单~ dp数组及下标含义: dp[i]表示第i各斐…...
android NumberPicker隐藏分割线或修改颜色
在 Android 中,可以通过以下几种方法隐藏 NumberPicker 的分割线: 使用 XML 属性设置 在布局文件中的 NumberPicker 标签内添加 android:selectionDividerHeight"0dp" 属性,将分割线的高度设置为 0,从而达到隐藏分割线…...
7-2 二分查找
输入n值(1<n<1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。 输入格式: 输入共三行: 第一行是n值࿱…...
mid360使用cartorapher进行3d建图导航
1. 添加urdf配置文件: 添加IMU配置关节点和laser关节点 <!-- imu livox --> <joint name"livox_frame_joint" type"fixed"> <parent link"base_link" /> <child link"livox_frame" /> <o…...
Ubuntu安装grafana
需求背景:管理服务器,并在线预警,通知 需求目的: 及时获取服务器状态 技能要求: 1、ubuntu 2、grafana 3、prometheus 4、node 步骤: 一、grafana安装 1、准备系统环境,配置号网络 2、…...
Java版-图论-最短路-Floyd算法
实现描述 网络延迟时间示例 根据上面提示,可以计算出,最大有100个点,最大耗时为100*wi,即最大的耗时为10000,任何耗时计算出来超过这个值可以理解为不可达了;从而得出实现代码里面的: int maxTime 10005…...
可视化建模以及UML期末复习篇----UML图
这是一篇相对较长的文章,如你们所见,比较详细,全长两万字。我不建议你们一次性看完,直接跳目录找你需要的知识点即可。 --------欢迎各位来到我UML国! 一、UML图 总共有如下几种: 用例图(Use Ca…...
HTML常见标签列表,涵盖了多种用途的标签。
文档结构标签 <!DOCTYPE html>:声明文档类型,告诉浏览器使用HTML5标准。<html>:HTML文档的根元素。<head>:包含文档的元数据(meta-data),如标题、字符集、样式表链接、脚本等…...
FPGA 16 ,Verilog中的位宽:深入理解与应用
目录 前言 一. 位宽的基本概念 二. 位宽的定义方法 1. 使用向量变量定义位宽 ① 向量类型及位宽指定 ② 位宽范围及位索引含义 ③ 存储数据与字节数据 2. 使用常量参数定义位宽 3. 使用宏定义位宽 4. 使用[:][-:]操作符定义位宽 1. 详细解释 : 操作符 -: 操作符 …...
vue-生命周期
Vue 的生命周期是指 Vue 实例从创建到销毁期间经历的一系列阶段。每个阶段都有相应的钩子函数(Lifecycle Hooks),允许开发者在这些关键时刻执行自定义逻辑。 一、钩子函数 1. 创建阶段 beforeCreate 在实例初始化之后,数据观测 …...
浅谈Kubernetes(K8s)之RC控制器与RS控制器
1.RC控制器 1.1RC概述 Replication Controller 控制器会持续监控正在运行的Pod列表,并保证相应类型的Pod的数量与期望相符合,如果Pod数量过少,它会根据Pod模板创建新的副本,反之则会删除多余副本。通过RC可实现了应用服务的高可用…...
本题要求采用选择法排序,将给定的n个整数从大到小排序后输出。
#include <stdio.h> #define MAXN 10 int main() { int i, index, k, n, temp; int a[MAXN]; scanf("%d", &n); for (i 0; i < n; i) { scanf("%d", &a[i]); } // 外层循环控制排序轮数,一共需要n-1轮 for (k 0; k < n…...
Linux: glibc: 频繁调用new/delete会不会导致内存的碎片
最近同事问了一个问题:频繁调用new/delete会不会导致内存的碎片。 下面是我想到的一些回答, glibc的内存处理机制,是在释放的时候会自动将小块内存整合成大块内存,为接下来满足大块的需求的可能。而且程序也不是一直占着内存不释放(如果是一直不释放,要考虑是不是内存泄漏…...
量子变分算法---损失函数
引子 关于损失函数,我们知道在强化学习中,会有一个函数,用来表示模型每一次行为的分数,通过最大化得分,建立一个正反馈机制,若模型为最优则加分最多,若决策不佳则加很少分或者扣分。而在神经网络…...
计算机的性能评估
目录 计算机的性能评估 确定性能指标 考虑通讯因素 考虑机器过热因素 综合评估模型 动态评估与调整 计算机的性能评估 在分布式计算机系统中,综合考虑各种因素来评估性能是一个复杂但重要的问题。以下是一种可能的方法来综合考虑评估分布式计算机性能,动态地考虑实际情…...
大数据之国产数据库_OceanBase数据库002_在centos7.9上_安装部署OceanBase001_踩坑指南_亲测可用
部署前最好看一下,部署前的要求, 主要是系统 以及系统内核版本,还有比如清理一下缓存等,按照做一做. 这些都是前置条件. 清一下缓存. 也就是说官网给的前置的条件,都要根据说明去执行一遍,如果不执行可能后面安装会报错. 然后用户最好也去创建一个用户. 注意前置...
【ETCD】【源码阅读】深入解析 EtcdServer.run 函数
EtcdServer.run 是 etcd 的核心运行逻辑之一,负责管理 Raft 状态机的应用、事件调度以及集群的核心操作。本文将逐步从源码层面分析 run 函数的逻辑,帮助读者理解其内部机制和设计思想。 函数签名与关键职责 func (s *EtcdServer) run() {... }关键职责…...
springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码
springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码 基于springboot(可改ssm)vue项目 开发语言:Java 框架:springboot/可改ssm vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库ÿ…...
floodfill算法
目录 什么是floodfill算法 题目一——733. 图像渲染 - 力扣(LeetCode) 题目二——200. 岛屿数量 - 力扣(LeetCode) 题目三——695. 岛屿的最大面积 - 力扣(LeetCode) 题目四—— 130. 被围绕的区域 …...
【JAVA】六亮增加贴
James Gosling(詹姆斯.高斯林) Java 语言源于 1991 年 4 月,Sun 公司 James Gosling博士 领导的绿色计划(Green Project) 开始启动,此计划最初的目标是开发一种能够在各种消费性电子产品(如机顶盒、冰箱、收音机等)上运行的程序…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
