[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
理论基础
题型
- 动归基础(这一节就是基础题)
- 背包问题
- 打家劫舍
- 股票问题
- 子序列问题
动态规划五部曲
- 确定dp数组及其下标的含义
- 确定递推公式
- dp数组如何初始化
- 遍历顺序
- 打印dp数组
509. 斐波那契数
简单~
- dp数组及下标含义: dp[i]表示第i各斐波那契数,值为dp[i]
- 递推公式:dp[i] = dp[i-1] -dp[i-2]
- dp数组如何初始化:dp[0] = 0; dp[1] = 1;题目描述中有敌意
- 遍历顺序:从前往后
- 打印dp数组
当前位置的值只与该位置的前两个数值有关,只需要维护长度为2的数组。
class Solution {
public:int fib(int n) {if(n==0 || n==1) return n;vector<int> dp(2);dp[0] = 0; dp[1] = 1;for(int i=2; i<=n; i++){int sum = dp[1] + dp[0];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};
class Solution {public int fib(int n) {if(n == 0 || n == 1) return n;int[] dp = new int[2];dp[0] = 0; dp[1] = 1;for(int i = 2; i<=n; i++){int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
}
class Solution(object):def fib(self, n):""":type n: int:rtype: int"""if n == 0 or n == 1:return ndp = [0,1]for i in range(2, n+1):sum_ = dp[0] + dp[1]dp[0] = dp[1]dp[1] = sum_return dp[1]
参考文章
- https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
70. 爬楼梯
要明白如果爬n层有两种情况: 一种是从n-2层迈两步上来的,一种是从n-1层迈一步上来的。所以到达第n层的方法数量=到达第n-2层的方法数+到达第n-1层的方法数。
- dp数组及其下标含义 dp[i] 表示到达第i层的方法数量
- 递推公式 dp[i] = dp[i-1] + dp[i-2]
- dp数组初始化 dp[1] = 1 dp[2] = 2,0没有实际意义
- 遍历顺序:从前往后
- 打印dp数组
当前位置数值只与当前位置前2个位置数值有关,只需要维护长度为2的数组,但是0没有实际意义,为了实现更加明确的初始化我们定义长度为3的数组,0这个位置不进行初始化。
class Solution {
public:int climbStairs(int n) {if(n==1 || n==2) return n;vector<int> dp(3);dp[1] = 1;//空出0来因为没有意义dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};
class Solution {public int climbStairs(int n) {if(n == 1 || n == 2) return n;int[] dp = new int[3];dp[1] = 1; dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
}
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""if n == 1 or n == 2:return ndp = [None, 1, 2]for i in range(3, n+1):sum_ = dp[1] + dp[2]dp[1] = dp[2]dp[2] = sum_return dp[2]
参考文章
- https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
746. 使用最小花费爬楼梯
Note:注意题目描述,该位置不花费体力,往上跳花费体力。并且cost的长度是顶楼。
- dp数组及其下标含义:dp[i] 到达第i层所需要的最小花费为dp[i]
- 递推公式: dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
- dp数组如何初始化: dp[0]=0;dp[1]=0;//因为当前位置不花费,向上跳才花费所以都初始化为0
- 遍历顺序:从前往后
- 打印dp数组
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {if(cost.size()<2) return 0;vector<int> dp(2);for(int i = 2; i <= cost.size(); i++){int minCost = min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
};
class Solution {public int minCostClimbingStairs(int[] cost) {if(cost.length<2) return 0;int[] dp = new int[]{0, 0};for(int i = 2; i <= cost.length; i++){int minCost = Math.min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
}
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""if len(cost)<2:return 0dp = [0, 0]for i in range(2, len(cost)+1):minCost = min(dp[0]+cost[i-2], dp[1]+cost[i-1])dp[0] = dp[1]dp[1] = minCostreturn dp[1]
参考文章
- https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html
相关文章:
[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
理论基础 题型 动归基础(这一节就是基础题)背包问题打家劫舍股票问题子序列问题 动态规划五部曲 确定dp数组及其下标的含义确定递推公式dp数组如何初始化遍历顺序打印dp数组 509. 斐波那契数 简单~ dp数组及下标含义: dp[i]表示第i各斐…...
android NumberPicker隐藏分割线或修改颜色
在 Android 中,可以通过以下几种方法隐藏 NumberPicker 的分割线: 使用 XML 属性设置 在布局文件中的 NumberPicker 标签内添加 android:selectionDividerHeight"0dp" 属性,将分割线的高度设置为 0,从而达到隐藏分割线…...
7-2 二分查找
输入n值(1<n<1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。 输入格式: 输入共三行: 第一行是n值࿱…...
mid360使用cartorapher进行3d建图导航
1. 添加urdf配置文件: 添加IMU配置关节点和laser关节点 <!-- imu livox --> <joint name"livox_frame_joint" type"fixed"> <parent link"base_link" /> <child link"livox_frame" /> <o…...
Ubuntu安装grafana
需求背景:管理服务器,并在线预警,通知 需求目的: 及时获取服务器状态 技能要求: 1、ubuntu 2、grafana 3、prometheus 4、node 步骤: 一、grafana安装 1、准备系统环境,配置号网络 2、…...
Java版-图论-最短路-Floyd算法
实现描述 网络延迟时间示例 根据上面提示,可以计算出,最大有100个点,最大耗时为100*wi,即最大的耗时为10000,任何耗时计算出来超过这个值可以理解为不可达了;从而得出实现代码里面的: int maxTime 10005…...
可视化建模以及UML期末复习篇----UML图
这是一篇相对较长的文章,如你们所见,比较详细,全长两万字。我不建议你们一次性看完,直接跳目录找你需要的知识点即可。 --------欢迎各位来到我UML国! 一、UML图 总共有如下几种: 用例图(Use Ca…...
HTML常见标签列表,涵盖了多种用途的标签。
文档结构标签 <!DOCTYPE html>:声明文档类型,告诉浏览器使用HTML5标准。<html>:HTML文档的根元素。<head>:包含文档的元数据(meta-data),如标题、字符集、样式表链接、脚本等…...
FPGA 16 ,Verilog中的位宽:深入理解与应用
目录 前言 一. 位宽的基本概念 二. 位宽的定义方法 1. 使用向量变量定义位宽 ① 向量类型及位宽指定 ② 位宽范围及位索引含义 ③ 存储数据与字节数据 2. 使用常量参数定义位宽 3. 使用宏定义位宽 4. 使用[:][-:]操作符定义位宽 1. 详细解释 : 操作符 -: 操作符 …...
vue-生命周期
Vue 的生命周期是指 Vue 实例从创建到销毁期间经历的一系列阶段。每个阶段都有相应的钩子函数(Lifecycle Hooks),允许开发者在这些关键时刻执行自定义逻辑。 一、钩子函数 1. 创建阶段 beforeCreate 在实例初始化之后,数据观测 …...
浅谈Kubernetes(K8s)之RC控制器与RS控制器
1.RC控制器 1.1RC概述 Replication Controller 控制器会持续监控正在运行的Pod列表,并保证相应类型的Pod的数量与期望相符合,如果Pod数量过少,它会根据Pod模板创建新的副本,反之则会删除多余副本。通过RC可实现了应用服务的高可用…...
本题要求采用选择法排序,将给定的n个整数从大到小排序后输出。
#include <stdio.h> #define MAXN 10 int main() { int i, index, k, n, temp; int a[MAXN]; scanf("%d", &n); for (i 0; i < n; i) { scanf("%d", &a[i]); } // 外层循环控制排序轮数,一共需要n-1轮 for (k 0; k < n…...
Linux: glibc: 频繁调用new/delete会不会导致内存的碎片
最近同事问了一个问题:频繁调用new/delete会不会导致内存的碎片。 下面是我想到的一些回答, glibc的内存处理机制,是在释放的时候会自动将小块内存整合成大块内存,为接下来满足大块的需求的可能。而且程序也不是一直占着内存不释放(如果是一直不释放,要考虑是不是内存泄漏…...
量子变分算法---损失函数
引子 关于损失函数,我们知道在强化学习中,会有一个函数,用来表示模型每一次行为的分数,通过最大化得分,建立一个正反馈机制,若模型为最优则加分最多,若决策不佳则加很少分或者扣分。而在神经网络…...
计算机的性能评估
目录 计算机的性能评估 确定性能指标 考虑通讯因素 考虑机器过热因素 综合评估模型 动态评估与调整 计算机的性能评估 在分布式计算机系统中,综合考虑各种因素来评估性能是一个复杂但重要的问题。以下是一种可能的方法来综合考虑评估分布式计算机性能,动态地考虑实际情…...
大数据之国产数据库_OceanBase数据库002_在centos7.9上_安装部署OceanBase001_踩坑指南_亲测可用
部署前最好看一下,部署前的要求, 主要是系统 以及系统内核版本,还有比如清理一下缓存等,按照做一做. 这些都是前置条件. 清一下缓存. 也就是说官网给的前置的条件,都要根据说明去执行一遍,如果不执行可能后面安装会报错. 然后用户最好也去创建一个用户. 注意前置...
【ETCD】【源码阅读】深入解析 EtcdServer.run 函数
EtcdServer.run 是 etcd 的核心运行逻辑之一,负责管理 Raft 状态机的应用、事件调度以及集群的核心操作。本文将逐步从源码层面分析 run 函数的逻辑,帮助读者理解其内部机制和设计思想。 函数签名与关键职责 func (s *EtcdServer) run() {... }关键职责…...
springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码
springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码 基于springboot(可改ssm)vue项目 开发语言:Java 框架:springboot/可改ssm vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库ÿ…...
floodfill算法
目录 什么是floodfill算法 题目一——733. 图像渲染 - 力扣(LeetCode) 题目二——200. 岛屿数量 - 力扣(LeetCode) 题目三——695. 岛屿的最大面积 - 力扣(LeetCode) 题目四—— 130. 被围绕的区域 …...
【JAVA】六亮增加贴
James Gosling(詹姆斯.高斯林) Java 语言源于 1991 年 4 月,Sun 公司 James Gosling博士 领导的绿色计划(Green Project) 开始启动,此计划最初的目标是开发一种能够在各种消费性电子产品(如机顶盒、冰箱、收音机等)上运行的程序…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
