SQL连续登录问题(详细案例分析)
如果要统计用户活跃度,那就涉及连续登录问题,接下来将举一个简单的例子来详细说明这个问题:
一、创建一些模拟数据
一些测试数据如下:
deviceid1,2022-10-26,2022-10-26,2022-11-01
deviceid1,2022-10-26,2022-11-03,2022-11-05
deviceid2,2022-10-27,2022-10-27,2022-11-08
deviceid2,2022-10-27,2022-11-10,9999-12-31
deviceid3,2022-10-27,2022-10-27,2022-11-01
deviceid3,2022-10-27,2022-11-04,2022-11-11
deviceid3,2022-10-27,2022-11-14,9999-12-31
deviceid4,2022-10-01,2022-10-01,2022-10-11
deviceid4,2022-10-01,2022-10-13,2022-11-01
deviceid4,2022-10-01,2022-11-03,2022-11-05
-- 1.创建用户活跃区间表
create table tmp.app_user_active_range(deviceid string, -- 设备编号first_login string, -- 首访日期start_dt string, -- 用户活跃区间起始时间end_dt string -- 用户活跃区间结束时间
)
partitioned by(dt string)
row format delimited
fields terminated by ',';-- 2、模拟用户活跃数据,将上述数据保存到服务器/root/range.txt路径下 然后load到tmp.app_user_active_range表,load data local inpath '/root/range.txt' overwrite into table tmp.app_user_active_range partition(dt='2022-11-23');

二、一些统计用户活跃度的问题
下面是三个简单的指标:
1、最近一个月内,每个用户的最大连续活跃天数
2、最近一个月内,连续活跃[1-10)天的人数,[10-20)天的人数,[20+ 天的人数
3、最近一个月内,沉默天数超过3天的有多少人,超过5天有多少人
三、 指标开发详细解决步骤
1、最近一个月内,每个用户的最大连续活跃天数
select * from tmp.app_user_active_range;
with t as (select *,datediff(`if`(end_dt=='9999-12-31',dt,end_dt),`if`(start_dt<date_sub(dt,30),date_sub(dt,30),start_dt))+1 active_daysfrom tmp.app_user_active_range where end_dt>=date_sub(dt,30)unionselect *,0 from tmp.app_user_active_range where end_dt<date_sub(dt,30)
)select deviceid,max(active_days) max_days from t group by deviceid;
2、最近一个月内,连续活跃[1-10)天的人数,[10-20)天的人数,[20+ 天的人数
-- 需求2:最近一个月内,连续活跃[1-10)天的人数,[10-20)天的人数,[20+ 天的人数
with t as (select *,datediff(`if`(end_dt=='9999-12-31',dt,end_dt),`if`(start_dt<date_sub(dt,30),date_sub(dt,30),start_dt))+1 active_daysfrom tmp.app_user_active_range where end_dt>=date_sub(dt,30)unionselect *,0 from tmp.app_user_active_range where end_dt<date_sub(dt,30)
),t1 as (select deviceid,case when active_days between 1 and 9 then '[1-10)'when active_days between 10 and 19 then '[10-20)'when active_days>=20 then '[20+'else '0'end as qujianfrom t
)select qujian,count(distinct deviceid) people_num from t1 group by qujian;
3、最近一个月内,沉默天数超过3天的有多少人,超过5天有多少人
-- 最近一个月内,沉默天数超过3天的有多少人,超过5天有多少人-- 最终结果
with z as (-- 前半段沉默时间和中间沉默时间with t as (select *,datediff(start_dt,lag(end_dt,1,`if`(first_login<date_sub(dt,30),date_sub(dt,30),first_login)) over(partition by deviceid order by start_dt))-1 chenmodaysfrom tmp.app_user_active_range where end_dt>=date_sub(dt,30)
)select deviceid,chenmodays from t where chenmodays>0
union all
-- 后半段沉默时间
select deviceid,datediff(dt,end_dt)-1 chenmodays from (select *,max(end_dt) over(partition by deviceid) max_chenmo from tmp.app_user_active_range where end_dt>=date_sub(dt,30))t where max_chenmo<dt and end_dt=max_chenmo
) ,z2 as (select deviceid,sum(chenmodays) chenmodays from z group by deviceid
) selectcase when chenmodays>=3 and chenmodays<5 then '[3,5)'when chenmodays>5 then '[5+)'else '[0,3)'end flag,count(1) numfrom z2 group by flag;
相关文章:
SQL连续登录问题(详细案例分析)
如果要统计用户活跃度,那就涉及连续登录问题,接下来将举一个简单的例子来详细说明这个问题: 一、创建一些模拟数据 一些测试数据如下: deviceid1,2022-10-26,2022-10-26,2022-11-01 deviceid1,2022-10-26,2022-11-03,2022-11-0…...
Next.js 系统性教学:深入理解缓存与数据优化策略
更多有关Next.js教程,请查阅: 【目录】Next.js 独立开发系列教程-CSDN博客 目录 前言 1. 缓存的基本概念 1.1 缓存的作用 1.2 Next.js 中的缓存策略 2. Next.js 的缓存机制 2.1 请求记忆化(Request Memoization) 2.1.1 什…...
【PyTorch】(基础六)---- 搭建卷积神经网络
关于神经网络中激活函数、卷积层、池化层等底层原理,我不会在本文中详解,但是关于pytorch中如何使用对应的方法实现这些层的功能我会进行解释,如果你想要了解一些关于神经网络底层的知识,我十分推荐你去看一下吴恩达老师的深度学习…...
【JAVA项目】基于ssm的【美食推荐管理系统】
【JAVA项目】基于ssm的【美食推荐管理系统】 技术简介:采用JSP技术、B/S架构、SSM框架、MySQL技术等实现。 系统简介:美食推荐管理系统,在系统首页可以查看首页、热门美食、美食教程、美食店铺、美食社区、美食资讯、我的、跳转到后台等内容。…...
adb 常用命令笔记
adb connect <ip> #连接指定ip adb disconnect <ip> #断开连接指定ip adb devices #查看连接中的设备 adb install <flie> #安装apk adb uninstall <packageName> #卸载app adb -s install <flie> #指定设备安装 adb shell pm list package…...
[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
理论基础 题型 动归基础(这一节就是基础题)背包问题打家劫舍股票问题子序列问题 动态规划五部曲 确定dp数组及其下标的含义确定递推公式dp数组如何初始化遍历顺序打印dp数组 509. 斐波那契数 简单~ dp数组及下标含义: dp[i]表示第i各斐…...
android NumberPicker隐藏分割线或修改颜色
在 Android 中,可以通过以下几种方法隐藏 NumberPicker 的分割线: 使用 XML 属性设置 在布局文件中的 NumberPicker 标签内添加 android:selectionDividerHeight"0dp" 属性,将分割线的高度设置为 0,从而达到隐藏分割线…...
7-2 二分查找
输入n值(1<n<1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。 输入格式: 输入共三行: 第一行是n值࿱…...
mid360使用cartorapher进行3d建图导航
1. 添加urdf配置文件: 添加IMU配置关节点和laser关节点 <!-- imu livox --> <joint name"livox_frame_joint" type"fixed"> <parent link"base_link" /> <child link"livox_frame" /> <o…...
Ubuntu安装grafana
需求背景:管理服务器,并在线预警,通知 需求目的: 及时获取服务器状态 技能要求: 1、ubuntu 2、grafana 3、prometheus 4、node 步骤: 一、grafana安装 1、准备系统环境,配置号网络 2、…...
Java版-图论-最短路-Floyd算法
实现描述 网络延迟时间示例 根据上面提示,可以计算出,最大有100个点,最大耗时为100*wi,即最大的耗时为10000,任何耗时计算出来超过这个值可以理解为不可达了;从而得出实现代码里面的: int maxTime 10005…...
可视化建模以及UML期末复习篇----UML图
这是一篇相对较长的文章,如你们所见,比较详细,全长两万字。我不建议你们一次性看完,直接跳目录找你需要的知识点即可。 --------欢迎各位来到我UML国! 一、UML图 总共有如下几种: 用例图(Use Ca…...
HTML常见标签列表,涵盖了多种用途的标签。
文档结构标签 <!DOCTYPE html>:声明文档类型,告诉浏览器使用HTML5标准。<html>:HTML文档的根元素。<head>:包含文档的元数据(meta-data),如标题、字符集、样式表链接、脚本等…...
FPGA 16 ,Verilog中的位宽:深入理解与应用
目录 前言 一. 位宽的基本概念 二. 位宽的定义方法 1. 使用向量变量定义位宽 ① 向量类型及位宽指定 ② 位宽范围及位索引含义 ③ 存储数据与字节数据 2. 使用常量参数定义位宽 3. 使用宏定义位宽 4. 使用[:][-:]操作符定义位宽 1. 详细解释 : 操作符 -: 操作符 …...
vue-生命周期
Vue 的生命周期是指 Vue 实例从创建到销毁期间经历的一系列阶段。每个阶段都有相应的钩子函数(Lifecycle Hooks),允许开发者在这些关键时刻执行自定义逻辑。 一、钩子函数 1. 创建阶段 beforeCreate 在实例初始化之后,数据观测 …...
浅谈Kubernetes(K8s)之RC控制器与RS控制器
1.RC控制器 1.1RC概述 Replication Controller 控制器会持续监控正在运行的Pod列表,并保证相应类型的Pod的数量与期望相符合,如果Pod数量过少,它会根据Pod模板创建新的副本,反之则会删除多余副本。通过RC可实现了应用服务的高可用…...
本题要求采用选择法排序,将给定的n个整数从大到小排序后输出。
#include <stdio.h> #define MAXN 10 int main() { int i, index, k, n, temp; int a[MAXN]; scanf("%d", &n); for (i 0; i < n; i) { scanf("%d", &a[i]); } // 外层循环控制排序轮数,一共需要n-1轮 for (k 0; k < n…...
Linux: glibc: 频繁调用new/delete会不会导致内存的碎片
最近同事问了一个问题:频繁调用new/delete会不会导致内存的碎片。 下面是我想到的一些回答, glibc的内存处理机制,是在释放的时候会自动将小块内存整合成大块内存,为接下来满足大块的需求的可能。而且程序也不是一直占着内存不释放(如果是一直不释放,要考虑是不是内存泄漏…...
量子变分算法---损失函数
引子 关于损失函数,我们知道在强化学习中,会有一个函数,用来表示模型每一次行为的分数,通过最大化得分,建立一个正反馈机制,若模型为最优则加分最多,若决策不佳则加很少分或者扣分。而在神经网络…...
计算机的性能评估
目录 计算机的性能评估 确定性能指标 考虑通讯因素 考虑机器过热因素 综合评估模型 动态评估与调整 计算机的性能评估 在分布式计算机系统中,综合考虑各种因素来评估性能是一个复杂但重要的问题。以下是一种可能的方法来综合考虑评估分布式计算机性能,动态地考虑实际情…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
