当前位置: 首页 > news >正文

【大模型系列篇】LLaMA-Factory大模型微调实践 - 从零开始

前一次我们使用了NVIDIA TensorRT-LLM 大模型推理框架对智谱chatglm3-6b模型格式进行了转换和量化压缩,并成功部署了推理服务,有兴趣的同学可以翻阅《NVIDIA TensorRT-LLM 大模型推理框架实践》,今天我们来实践如何通过LLaMA-Factory对大模型进行Lora微调。

首先我们来认识一下LLaMA-Factory,它是一个在 GitHub 上开源的项目,为大语言模型(LLM)的训练、微调和部署提供了一个简便且高效的框架。该项目旨在简化和加速 LLaMA以及其他多种大型语言模型的微调过程,使得即使是非专业用户也能轻松上手。

功能介绍

https://llamafactory.readthedocs.io/zh-cn/latest/

LLaMA-Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调,框架特性包括:

  • 模型种类:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 训练算法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 运算精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 优化算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
  • 加速算子:FlashAttention-2 和 Unsloth。
  • 推理引擎:Transformers 和 vLLM。
  • 实验面板:LlamaBoard、TensorBoard、Wandb、MLflow 等等。

安装部署

我们本次采用docker方式部署启动LLaMA-Factory镜像容器,本次实践前提需要让容器能访问到宿主机的GPU资源,大家可以参考之前整理的《GPU资源容器化访问使用指南》一步一步操作。

下载源码

#【github加速计划】速度慢,可访问 git clone https://gitcode.com/gh_mirrors/ll/LLaMA-Factory.git
git clone --depth 1 https://github.com/hiyouga//LLaMA-Factory.git

构建镜像,启动容器

cd LLaMA-Factory/docker/docker-cuda/
#构建镜像,启动服务
docker compose up -d

 进入容器,启动webui服务

# 进入容器
docker compose exec llamafactory bash
# 启动webui服务
llamafactory-cli webui# 模型下载加速- USE_MODELSCOPE_HUB设为1,表示模型来源是ModelScope 
# 需要安装 pip install modelscope
export USE_MODELSCOPE_HUB=1 && llamafactory-cli webui

https://llamafactory.readthedocs.io/zh-cn/latest/getting_started/webui.html

访问 0.0.0.0:7860

模型微调 

数据预处理

https://llamafactory.readthedocs.io/zh-cn/latest/getting_started/data_preparation.html

微调样本集数据格式

[{"instruction":"用户指令(必填)","input":"用户输入(选填)","output":"模型回答(必填)","system":"系统提示词(选填)","history":[["第一轮指令(选填)","第一轮回答(选填)"],["第二轮指令(选填)","第二轮回答(选填)"]]}
]

data/dataset_info.json 添加本地样本集

选择准备的数据集

选择训练轮数: 50 

点击开始,进行微调

模型微调参数

# Model config ChatGLMConfig 
{"_name_or_path": "/root/.cache/modelscope/hub/ZhipuAI/chatglm3-6b","add_bias_linear": false,"add_qkv_bias": true,"apply_query_key_layer_scaling": true,"apply_residual_connection_post_layernorm": false,"architectures": ["ChatGLMModel"],"attention_dropout": 0.0,"attention_softmax_in_fp32": true,"auto_map": {"AutoConfig": "configuration_chatglm.ChatGLMConfig","AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration","AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration","AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration","AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"},"bias_dropout_fusion": true,"classifier_dropout": null,"eos_token_id": 2,"ffn_hidden_size": 13696,"fp32_residual_connection": false,"hidden_dropout": 0.0,"hidden_size": 4096,"kv_channels": 128,"layernorm_epsilon": 1e-05,"model_type": "chatglm","multi_query_attention": true,"multi_query_group_num": 2,"num_attention_heads": 32,"num_layers": 28,"original_rope": true,"pad_token_id": 0,"padded_vocab_size": 65024,"post_layer_norm": true,"pre_seq_len": null,"prefix_projection": false,"quantization_bit": 0,"rmsnorm": true,"seq_length": 8192,"tie_word_embeddings": false,"torch_dtype": "float16","transformers_version": "4.43.4","use_cache": true,"vocab_size": 65024
}

模型微调前后对比

从Train切换至Chat,点击加载模型,进行模型推理部署

微调前对话 

 微调后对话

相关文章:

【大模型系列篇】LLaMA-Factory大模型微调实践 - 从零开始

前一次我们使用了NVIDIA TensorRT-LLM 大模型推理框架对智谱chatglm3-6b模型格式进行了转换和量化压缩,并成功部署了推理服务,有兴趣的同学可以翻阅《NVIDIA TensorRT-LLM 大模型推理框架实践》,今天我们来实践如何通过LLaMA-Factory对大模型…...

30天学会Go--第7天 GO语言 Redis 学习与实践

30天学会Go–第7天 GO语言 Redis 学习与实践 文章目录 30天学会Go--第7天 GO语言 Redis 学习与实践前言一、Redis 基础知识1.1 Redis 的核心特性1.2 Redis 常见使用场景 二、安装 Redis2.1 在 Linux 上安装2.2 在 Windows 上安装2.3 使用 Docker 安装 Redis 三、Redis 常用命令…...

java 使用JSqlParser和CCJSqlParser 解析sql

maven <dependency><groupId>com.github.jsqlparser</groupId><artifactId>jsqlparser</artifactId><version>4.9</version> </dependency>解析SQL String sql "select aa,bb from b"; Statement statementCCJSq…...

基于spring boot的高校专业实习管理系统的设计与实现

文末获取源码和万字论文&#xff0c;制作不易&#xff0c;感谢点赞支持。 设计题目&#xff1a;基于spring boot的高校专业实习管理系统的设计与实现 摘 要 随着国内市场经济这几十年来的蓬勃发展&#xff0c;突然遇到了从国外传入国内的互联网技术&#xff0c;互联网产业从开…...

OpenCV相机标定与3D重建(11)机器人世界手眼标定函数calibrateRobotWorldHandEye()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算机器人世界/手眼标定&#xff1a; w T b _{}^{w}\textrm{T}_b w​Tb​ 和 c T g _{}^{c}\textrm{T}_g c​Tg​。 cv::calibrateRobotWorldHa…...

计算机网络ENSP课设--三层架构企业网络

本课程设计搭建一个小型互联网&#xff0c;并模拟Internet的典型Web服务过程。通过此次课程设计&#xff0c;可以进一步理解Internet的工作原理和协议过程&#xff0c;并提高综合知识的运用能力和分析能力。具体目标包括&#xff1a; &#xff08;1&#xff09;掌握网络拓扑的…...

【openwrt】openwrt-21.02 基于IP地址使用ipset实现策略路由操作说明

openwrt版本信息 DISTRIB_ID=OpenWrt DISTRIB_RELEASE=21.02-SNAPSHOT DISTRIB_REVISION=r0-6bf6af1d5 DISTRIB_TARGET=mediatek/mt7981 DISTRIB_ARCH=aarch64_cortex-a53 DISTRIB_DESCRIPTION=OpenWrt 21.02-SNAPSHOT r0-6bf6af1d5 DISTRIB_TAINTS=no-all busybox override …...

Git:常用命令

一、查看当前分支 git branch 二、查看所有分支 git branch -a 三、切换到远程分支 git checkout origin/分支名 示例&#xff1a;git checkout origin/dev 四、拉取远程分支代码 git pull origin 分支名 示例&#xff1a;git pull origin dev 五、常用指令 查看暂存区…...

【2025最新版】搭建个人博客教程

【2025最新版】搭建个人博客教程 –小记&#xff1a; 在搭建我的这个博客之前我在CSDN也发布过一些文章&#xff0c;目前应该也是几千粉丝了&#xff0c;但是看到别人都是用自己博客写的就感觉自己很LOW&#xff0c;所以就想自己来搭建一个属于自己的个人博客。当然搭建博客的…...

微信小程序实现联动删除输入验证码框

以下是json代码 {"component": true,"usingComponents": {} }以下是wxml代码 <van-popup show"{{ show }}" bind:close"onClose" custom-class"extract"><image src"../../images/extract/icon1.png"…...

数据库中decimal、float 和 double区别

在计算机科学中&#xff0c;decimal、float 和 double 是用于表示和处理数值的不同数据类型。 - decimal 是一种精确的十进制浮点数表示&#xff0c;通常用于需要高精度计算的场景&#xff0c;比如财务应用。它能够精确表示小数&#xff0c;并且不会出现浮点数运算误差。 - flo…...

网络编程01

1. 概念 通过网络&#xff0c;让两个主机之间能够进行通信&#xff0c;基于这样的通信完成一定的功能 只要满足进程不同即可&#xff0c;即使是同一个主机&#xff0c;只要是不同的进程&#xff0c;基于网络完成编程 进行网络编程时&#xff0c;需要操作系统提供一组API&…...

el-dialog修改其样式不生效加deep也没用

场景 el-dialog标签直接写在了template下。 解决方法 在template中先写一层div&#xff0c;包裹住el-dialog。...

三天精通一算法之快速排序

力扣链接912. 排序数组 - 力扣&#xff08;LeetCode&#xff09;注意这题快排不能用递归&#xff0c;否则堆会爆 快速排序&#xff08;Quicksort&#xff09;是一种高效的排序算法&#xff0c;通常使用分治法来将一个列表分成较小的子列表&#xff0c;然后递归地排序这些子列表…...

互联网、物联网的相关标准

互联网的相关标准 网络通信协议&#xff1a; HTTP&#xff08;Hypertext Transfer Protocol&#xff09;&#xff1a;用于在网络中传输文本、图像、音频和视频等数据的协议。它基于请求-响应模型&#xff0c;客户端发送请求给服务器&#xff0c;服务器返回响应。HTTPS&a…...

Linux题库及答案

填空题 1. 建立用户账号的命令是__useradd________。 2. 修改账号密码的命令是__passwd________。 3. 更改用户密码过期信息的命令是__chage________。 4. 创建一个新组的命令是___groupadd_______。 5. 用于在不注销的情况下切换到系统中的另一个用户的命令是___su_…...

Android 镜像模式和扩展模式区别探讨-Android14

Android 镜像模式和扩展模式区别探讨 1、区分镜像模式和扩展模式1.1 扩展屏是否有显示内容1.2 镜像模式显示条件 2、镜像模式界面 同屏显示和异屏显示探讨DisplayManagerService启动及主屏添加-Android13 Android主副屏显示-Android14 1、区分镜像模式和扩展模式 LogicalDispla…...

深度学习笔记之BERT(五)TinyBERT

深度学习笔记之TinyBERT 引言回顾&#xff1a;DistilBERT模型TinyBERT模型结构TinyBERT模型策略Transformer层蒸馏嵌入层蒸馏预测层蒸馏 TinyBERT模型的训练效果展示 引言 上一节介绍了 DistilBERT \text{DistilBERT} DistilBERT模型&#xff0c;本节将继续介绍优化性更强的知…...

【时间序列预测】基于PyTorch实现CNN_BiLSTM算法

文章目录 1. CNN与BiLSTM2. 完整代码实现3. 代码结构解读3.1 CNN Layer3.2 BiLSTM Layer3.3 Output Layer3.4 forward Layer 4. 应用场景5. 总结 本文将详细介绍如何使用Pytorch实现一个结合卷积神经网络&#xff08;CNN&#xff09;和双向长短期记忆网络&#xff08;BiLSTM&am…...

联想Y7000 2024版本笔记本 RTX4060安装ubuntu22.04双系统及深度学习环境配置

目录 1..制作启动盘 2.Windows 磁盘分区,删除原来ubuntu的启动项 3.四个设置 4.安装ubuntu 5.ubuntu系统配置 1..制作启动盘 先下载镜像文件,注意版本对应。Rufus - 轻松创建 USB 启动盘 用rufus制作时,需要注意选择正确的分区类型和系统类型。不然安装的系统会有问题…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...