当前位置: 首页 > news >正文

Python爬虫之使用BeautifulSoup进行HTML Document文档的解析

BeautifulSoup 是一个用于解析 HTML 和 XML 文档的 Python 库,它为开发者提供了一种简单的方式来查找、遍历和修改文档树。BeautifulSoup 特别擅长处理不规则或格式不佳的标记语言,可以自动更正无效的 HTML,因此在网页抓取(Web Scraping)中非常受欢迎。

【1】基本介绍

主要特点

  • 易于使用:提供了直观的方法来导航、搜索和修改解析树。
  • 容错性强:能够处理有缺陷的 HTML,并尝试生成最可能的解析结果。
  • 多种解析器:支持 Python 标准库中的 HTML 解析器,以及第三方解析器如 lxml 和 html5lib。
  • 链式调用:可以通过连续调用方法来构建查询,使得代码更加简洁和易读。

安装

你可以通过 pip 安装 BeautifulSoup:

pip install beautifulsoup4

如果需要安装额外的解析器,比如 lxml 或 html5lib,也可以通过 pip 安装:

pip install lxml
pip install html5lib

【2】 基本用法

下面是一个简单的例子,展示如何使用 BeautifulSoup 来解析 HTML 内容并提取信息:

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>Title</title>
</head>
<body><div><ul><li id="l1">张三</li><li id="l2">李四</li><li>王五</li><a href="" id="" class="a1">尚硅谷</a><span>嘿嘿嘿</span></ul></div><a href="" title="a2">百度</a><div id="d1"><span>哈哈哈</span></div><p id="p1" class="p1">呵呵呵</p>
</body>
</html>

lxml内核解析本地文件:

# 默认打开的文件的编码格式是gbk 所以在打开文件的时候需要指定编码
soup = BeautifulSoup(open('1.html',encoding='utf-8'),'lxml')

lxml内核解析网络文件:

url = 'https://www.starbucks.com.cn/menu/'
response = urllib.request.urlopen(url)
content = response.read().decode('utf-8')
soup = BeautifulSoup(content,'lxml')

BeautifulSoup 提供了多种方法来寻找文档中的元素:

  • find_all(name, attrs, recursive, string, limit, **kwargs):查找所有符合条件的标签。
  • find(name, attrs, recursive, string, **kwargs):查找第一个符合条件的标签。
  • select(selector):使用 CSS 选择器来查找元素。
  • find_parent(name, attrs, **kwargs)find_parents(name, attrs, **kwargs):向上查找父级标签。
  • find_next_sibling(name, attrs, **kwargs)find_next_siblings(name, attrs, **kwargs):查找后面的兄弟标签。
  • find_previous_sibling(name, attrs, **kwargs)find_previous_siblings(name, attrs, **kwargs):查找前面的兄弟标签。
from bs4 import BeautifulSoup
# 默认打开的文件的编码格式是gbk 所以在打开文件的时候需要指定编码
soup = BeautifulSoup(open('1.html',encoding='utf-8'),'lxml')
# 根据标签名查找节点
# 找到的是第一个符合条件的数据
# print(soup.a)
# 获取标签的属性和属性值
# print(soup.a.attrs)

① find

# 返回的是第一个符合条件的数据
# print(soup.find('a'))# 根据title的值来找到对应的标签对象
# print(soup.find('a',title="a2"))# 根据class的值来找到对应的标签对象  注意的是class需要添加下划线
# print(soup.find('a',class_="a1"))

② find_all

返回的是一个列表 并且返回了所有的a标签

# print(soup.find_all('a'))# 如果想获取的是多个标签的数据 那么需要在find_all的参数中添加的是列表的数据
# print(soup.find_all(['a','span']))# limit的作用是查找前几个数据
# print(soup.find_all('li',limit=2))

③ select(推荐)

# select方法返回的是一个列表  并且会返回多个数据
# print(soup.select('a'))# 可以通过.代表class  我们把这种操作叫做类选择器
# print(soup.select('.a1'))# print(soup.select('#l1'))

属性选择器—通过属性来寻找对应的标签

# 查找到li标签中有id的标签
# print(soup.select('li[id]'))# 查找到li标签中id为l2的标签
# print(soup.select('li[id="l2"]'))

层级选择器/后代选择器

# 找到的是div下面的li
# print(soup.select('div li'))# 子代选择器
#  某标签的第一级子标签
# 注意:很多的计算机编程语言中 如果不加空格不会输出内容  但是在bs4中 不会报错 会显示内容
# print(soup.select('div > ul > li'))# 找到a标签和li标签的所有的对象
# print(soup.select('a,li'))

获取节点内容

# obj = soup.select('#d1')[0]
# print(obj.string)
# print(obj.get_text())

如果标签对象中 只有内容 那么string和get_text()都可以使用,如果标签对象中 除了内容还有标签 那么string就获取不到数据 ,而get_text()是可以获取数据

我们一般情况下 推荐使用get_text()。

节点的属性

# obj = soup.select('#p1')[0]
# name是标签的名字
# print(obj.name)
# 将属性值左右一个字典返回
# print(obj.attrs)# 获取节点的属性
obj = soup.select('#p1')[0]print(obj.attrs.get('class'))
print(obj.get('class'))
print(obj['class'])

相关文章:

Python爬虫之使用BeautifulSoup进行HTML Document文档的解析

BeautifulSoup 是一个用于解析 HTML 和 XML 文档的 Python 库&#xff0c;它为开发者提供了一种简单的方式来查找、遍历和修改文档树。BeautifulSoup 特别擅长处理不规则或格式不佳的标记语言&#xff0c;可以自动更正无效的 HTML&#xff0c;因此在网页抓取&#xff08;Web Sc…...

vue.config.js配置参数说明新手教程

这篇文章主要是对vue.config.js配置文件的主要参数进行一下说明&#xff0c;方便使用时的查询&#xff0c; 下面进行介绍 1、vue.config.js vue.config.js 是一个可选的配置文件&#xff0c;如果项目的 (和 package.json 同级的) 根目录中存在这个文件&#xff0c;那么它会被…...

C# 关于加密技术以及应用(二)

AES&#xff08;Advanced Encryption Standard&#xff09;和 RSA&#xff08;Rivest-Shamir-Adleman&#xff09;是两种不同的加密算法&#xff0c;它们各自有特定的使用场景和优势。下面是它们的主要区别和适用场景&#xff1a; AES&#xff08;高级加密标准&#xff09; 特…...

视频中的某些片段如何制作GIF表情包?

动态表情包&#xff08;GIF&#xff09;已经成为我们日常沟通中不可或缺的一部分。GIF&#xff08;Graphics Interchange Format&#xff09;&#xff0c;即图形交换格式&#xff0c;是一种支持多帧图像和透明度的位图文件格式。它最初由 CompuServe 公司在 1987 年推出&#x…...

图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序,GUI界面。附详细的运行说明。

图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序&#xff0c;GUI界面。附详细的运行说明。 目录 图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序&#xff0c;GUI界面。附详细的运行说明。预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab基…...

String【Redis对象篇】

&#x1f3c6; 作者简介&#xff1a;席万里 ⚡ 个人网站&#xff1a;https://dahua.bloggo.chat/ ✍️ 一名后端开发小趴菜&#xff0c;同时略懂Vue与React前端技术&#xff0c;也了解一点微信小程序开发。 &#x1f37b; 对计算机充满兴趣&#xff0c;愿意并且希望学习更多的技…...

top命令和系统负载

1 top中的字段说明 top是一个实时系统监视工具&#xff0c;可以动态展现出 CPU 使用率、内存使用情况、进程状态等信息&#xff0c;注意这些显示的文本不能直接使用 > 追加到文件中。 [rootvv~]# top -bn 1 | head top - 20:08:28 up 138 days, 10:29, 4 users, load av…...

ES6 混合 ES5学习记录

基础 数组 let arr [数据1&#xff0c;数据2&#xff0c;...数组n] 使用数组 数组名[索引] 数组长度 arr.length 操作数组 arr.push() 尾部添加一个,返回新长度 arr.unshift() 头部添加一个,返回新长度 arr.pop() 删除最后一个,并返回该元素的值 shift 删除第一个单元…...

HTTP 状态码大全

常见状态码 200 OK # 客户端请求成功 400 Bad Request # 客户端请求有语法错误 不能被服务器所理解 401 Unauthorized # 请求未经授权 这个状态代码必须和WWW- Authenticate 报头域一起使用 403 Forbidden # 服务器收到请求但是拒绝提供服务 404 Not Found # 请求资源不存…...

Redis学习(13)| Redisson 看门狗机制深度解析

文章目录 摘要1. 引言2. 看门狗的工作原理2.1 自动续期2.2 防止意外释放2.3 合理配置 3. 应用场景4. 最佳实践4.1 设置合理的lockWatchdogTimeout4.2 避免死锁4.3 监控和日志 5. 实现方式6. 使用示例7. 结论 摘要 Redisson 是一个用于 Redis 的 Java 客户端&#xff0c;它提供…...

【开源大屏】玩转开源积木BI,从0到1设计一个大屏

积木 BI 重磅推出免费大屏设计器&#xff01;功能超强大&#xff0c;操作超流畅&#xff0c;体验超酷炫。快来体验一下吧。 让我们一起来看一下如何从0到1设计一个大屏。 一、积木BI大屏介绍 积木BI可视化数据大屏 是一站式数据可视化展示平台&#xff0c;旨在帮助用户快速通…...

基于PCRLB的CMIMO雷达资源调度方法(MATLAB实现)

集中式多输入多输出CMIMO雷达作为一种新体制雷达&#xff0c;能够实现对多个目标的同时多波束探测&#xff0c;在多目标跟踪领域得到了广泛运用。自从2006年学者Haykin提出认知雷达理论&#xff0c;雷达资源分配问题就成为一个有实际应用价值的热点研究内容。本文基于目标跟踪的…...

PAT--1035 插入与归并

题目描述 根据维基百科的定义&#xff1a; 插入排序是迭代算法&#xff0c;逐一获得输入数据&#xff0c;逐步产生有序的输出序列。每步迭代中&#xff0c;算法从输入序列中取出一元素&#xff0c;将之插入有序序列中正确的位置。如此迭代直到全部元素有序。 归并排序进行如…...

Ubuntu20.04.6编译OpenWRT23.05.5错误

在Ubuntu20.04.6编译OpenWRT23.05.5时&#xff0c;会出现如下提示&#xff1a; fatal error: asm/types.h: No such file or directory 如果我们执行如下命令&#xff1a; sudo ln -s /usr/include/asm-generic /usr/include/asm 此时再次编译&#xff0c;会有如下提示&…...

一文说清flink从编码到部署上线

引言:目前flink的文章比较多,但一般都关注某一特定方面,很少有一个文章,从一个简单的例子入手,说清楚从编码、构建、部署全流程是怎么样的。所以编写本文,自己做个记录备查同时跟大家分享一下。本文以简单的mysql cdc为例展开说明。 环境说明:MySQL:5.7;flink:1.14.0…...

【5G】5G Physical Layer物理层(一)

5G多址接入和物理层与长期演进&#xff08;LTE&#xff09;存在一些差异。在下行方向&#xff0c;5G与LTE相似&#xff0c;依旧采用正交频分多址&#xff08;OFDMA&#xff09;。而在上行方向&#xff0c;5G采用了OFDMA和单载波频分多址&#xff08;SC-FDMA&#xff09;&#x…...

GauHuman阅读笔记【3D Human Modelling】

笔记目录 1. 基本信息2. 理解(个人初步理解,随时更改)3. 精读SummaryResearch Objective(s)Background / Problem StatementMethod(s)EvaluationConclusionReferences1. 基本信息 题目:GauHuman: Articulated Gaussian Splatting from Monocular Human Videos时间:2023.12…...

qemu安装arm64架构银河麒麟

qemu虚拟化软件&#xff0c;可以在一个平台上模拟另一个硬件平台&#xff0c;可以支持多种处理器架构。 一、安装 安装教程&#xff1a;https://blog.csdn.net/qq_36035382/article/details/125308044 下载链接&#xff1a;https://qemu.weilnetz.de/w64/2024/ 我下载的是 …...

在Elasticsearch (ES) 中,integer 和 integer_range的区别

在Elasticsearch (ES) 中,integer 和 integer_range 是两种不同的字段类型,它们用于存储和查询不同类型的数据。 Integer: integer 类型是用于存储32位整数值的简单数据类型。这个类型的字段适合用来表示单一的整数数值,例如用户的年龄、商品的数量等。支持标准的数值操作,…...

Playwright中Page类的方法

导航和页面操作 goto(url: str, **kwargs: Any): 导航到一个URL。 reload(**kwargs: Any): 重新加载当前页面。 go_back(**kwargs: Any): 导航到会话历史记录中的前一个页面。 go_forward(**kwargs: Any): 导航到会话历史记录中的下一个页面。 set_default_navigation_tim…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...