当前位置: 首页 > news >正文

人脸识别Adaface之libpytorch部署

目录

  • 1. libpytorch下载
  • 2. Adaface模型下载
  • 3. 模型转换
  • 4. c++推理
    • 4.1 前处理
    • 4.2 推理
    • 4.3 编译运行
      • 4.3.1 写CMakeLists.txt
      • 4.3.2 编译
      • 4.3.3 运行

1. libpytorch下载

参考:
https://blog.csdn.net/liang_baikai/article/details/127849577
下载完成后,将其解压到/usr/local下

2. Adaface模型下载

https://github.com/mk-minchul/AdaFace?tab=readme-ov-file
在这里插入图片描述
WebFace4M模型准确率最高,R50 WebFace4M和R100 WebFace12M的准确率十分接近,但耗时却低了不少,所以建议使用R50 WebFace4M

3. 模型转换

下载Adaface源码,并将下面代码放到其目录下执行即可

model_trans.py

import torch
import torch.nn as nn
from head import AdaFace 
import net
import onnxruntime as ort
import numpy as np
import onnx# 加载模型
adaface_models = {
#    'ir_101':"./adaface_ir101_ms1mv2.ckpt",'ir_50':"./adaface_ir50_webface4m.ckpt",
}
architecture = 'ir_50'model = net.build_model(architecture)
#model = AdaFace()
statedict = torch.load(adaface_models[architecture],map_location=torch.device('cpu'),weights_only=True)['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}model.load_state_dict(model_statedict, strict=True)for p in model.parameters():p.requires_grad = Falsemodel.eval()
device = torch.device("cpu");
model_cpu = model.to(device)# 创建一个示例输入
example_input = torch.rand(1, 3, 112, 112)  # 假设输入大小为 (1, 3, 112, 112)# 转换为 TorchScript
traced_model = torch.jit.trace(model_cpu, example_input)# 保存模型
traced_model.save('adaface.pt')# 导出为 ONNX 格式
#onnx_file_path = 'adaface.onnx'  # 输出文件名
#torch.onnx.export(model, example_input, onnx_file_path,
#                  export_params=True)#opset_version=11,  # ONNX 版本#do_constant_folding=True,  # 是否进行常量折叠#input_names=['input'],  # 输入名称#output_names=['output'],  # 输出名称#dynamic_axes={'input': {0: 'batch_size'},  # 动态 batch size#              'output': {0: 'batch_size'}})

4. c++推理

4.1 前处理

  • resize人脸图片为112x112
  • 归一化
  • BGR->RGB
  • 转换为tensor
  • N H W C->N C H W
  • reshape 1,3,112,112(模型输入shape)

4.2 推理

  • load model
  • 读取图片
  • 人脸检测对齐
  • 前处理
  • model.forward推理
#include <torch/script.h>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>torch::Tensor to_input(const cv::Mat& pil_rgb_image) {cv::Mat brg_img;cv::resize(pil_rgb_image, brg_img, cv::Size(112, 112));brg_img.convertTo(brg_img, CV_32FC3, 1.0 / 255.0);brg_img = (brg_img - 0.5) / 0.5;cv::cvtColor(brg_img, brg_img, cv::COLOR_BGR2RGB);torch::Tensor tensor = torch::from_blob(brg_img.data, {1, brg_img.rows, brg_img.cols, 3}, torch::kFloat32);tensor = tensor.permute({0, 3, 1, 2});tensor = tensor.reshape({1, 3, 112, 112});tensor = tensor.to(at::kCPU);return tensor;
}int main() {// 模型加载torch::jit::script::Module model;try {model = torch::jit::load("./adaface.pt");//model.eval();model.to(at::kCPU);} catch (const c10::Error& e) {std::cerr << "Error loading the model\n";return -1;}// 读取图片std::vector<std::string> images;getAllFiles("./images", images, {"jpg", "jpeg", "png"});// 人脸检测器初始化OpenCVFace open_cv_face;open_cv_face.Init("./models/face_detection_yunet_2023mar.onnx","./models/face_recognition_sface_2021dec.onnx", 0.9, 0.5);for (const auto &image_path : images){// Load an image using OpenCVcv::Mat orig_img = cv::imread(image_path);if (orig_img.empty()) {std::cerr << "Could not read the image\n";return -1;}auto detect_start = GetCurTimestamp();std::vector<cv::Mat> aligned_faces;// 人脸检测对齐open_cv_face.detectAndAlign(orig_img, aligned_faces);//std::cout<<"detect use time is  "<< (GetCurTimestamp() - detect_start)<<std::endl;for (const auto &face:aligned_faces){cv::Mat img(face);auto img_tensor = to_input(img);// Inference 推理std::vector<torch::jit::IValue> inputs;inputs.push_back(img_tensor);auto output = model.forward(inputs);// Check if the output is a tupleif (output.isTuple()) {auto output_tuple = output.toTuple();if (output_tuple->elements().size() > 0) {at::Tensor output_tensor = output_tuple->elements()[0].toTensor();//std::cout << output_tensor << std::endl;} else {std::cerr << "Output tuple is empty\n";return -1;}} else {at::Tensor output_tensor = output.toTensor();//std::cout << output_tensor << std::endl;}}}return 0;
}

注意:本代码的人脸检测和对齐使用opencv的Yunet和SFace实现, 地址

4.3 编译运行

4.3.1 写CMakeLists.txt

本工程依赖opencv和libtorch,一并下载解压到/usr/local下即可。

cmake_minimum_required(VERSION 3.22.1)
project(adaface-demo)set(QMAKE_CXXFLAGS "-std=c++17")
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)include_directories(/usr/local/include)
link_directories(/usr/local/lib)set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "/usr/local/opencv4" CACHE PATH "Where to look for OpenCV installation")# Find OpenCV
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})if (AARCH64)set(Torch_DIR /usr/local/libtorch/lib/python3.10/site-packages/torch/share/cmake/Torch)
else ()set(Torch_DIR /usr/local/libtorch/share/cmake/Torch)
endif ()find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})AUX_SOURCE_DIRECTORY(./src DIR_SRCS)
add_executable(adaface-demo ${DIR_SRCS})target_link_libraries(adaface-demo ${OpenCV_LIBS} ${TORCH_LIBRARIES})

4.3.2 编译

mkdir build
cd build
cmake ..

4.3.3 运行

将模型文件adaface.py拷贝到bin目录下

cd ../bin
./main

相关文章:

人脸识别Adaface之libpytorch部署

目录 1. libpytorch下载2. Adaface模型下载3. 模型转换4. c推理4.1 前处理4.2 推理4.3 编译运行4.3.1 写CMakeLists.txt4.3.2 编译4.3.3 运行 1. libpytorch下载 参考&#xff1a; https://blog.csdn.net/liang_baikai/article/details/127849577 下载完成后&#xff0c;将其解…...

vue3+echarts+websocket分时图与K线图实时推送

一、父组件代码&#xff1a; <template> <div class"chart-box" v-loading"loading"> <!-- tab导航栏 --> <div class"tab-box"> <div class"tab-list"> <div v-for"(item, index) in tabList…...

小程序开发实战项目:构建简易待办事项列表

随着移动互联网的飞速发展&#xff0c;小程序以其便捷性、即用即走的特点&#xff0c;成为了连接用户与服务的重要桥梁。无论是电商平台的购物助手&#xff0c;还是餐饮行业的点餐系统&#xff0c;小程序都在各个领域发挥着巨大的作用。 小程序开发基础 1. 小程序简介 小程序是…...

SD Express 卡漏洞导致笔记本电脑和游戏机遭受内存攻击

Positive Technologies 最近发布的一份报告揭示了一个名为 DaMAgeCard 的新漏洞&#xff0c;攻击者可以利用该漏洞利用 SD Express 内存卡直接访问系统内存。 该漏洞利用了 SD Express 中引入的直接内存访问 (DMA) 功能来加速数据传输速度&#xff0c;但也为对支持该标准的设备…...

前端node环境安装:nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)

需求&#xff1a;在做前端开发的时候&#xff0c;有的时候 这个项目需要 node 14 那个项目需要 node 16&#xff0c;我们也不能卸载 安装 。这岂不是很麻烦。这个时候 就需要 一个工具 来管理我们的 node 版本和 npm 版本。 下面就分享一个 nvm 工具 用来管理 node 版本。 这个…...

java之集合(详细-Map,Set,List)

1集合体系概述 1.1集合的概念 集合是一种容器&#xff0c;用来装数据的&#xff0c;类似于数组&#xff0c;但集合的大小可变&#xff0c;开发中也非常常用。 1.2集合分类 集合分为单列集合和多列集合 Collection代表单列集合&#xff0c;每个元素&#xff08;数据&#xff…...

常见LeetCode-Saw200

用来记录需要知道见过的题型&#xff1a; LeetCode2-两数相加 说明&#xff1a;以链表的形势给了你每个位的数字&#xff0c;而且是逆序&#xff0c;直接从开头&#xff08;个位&#xff09;遍历相加。带上进位即可。有一个为空就直接计算另一个和进位。 LeetCode-3.无重复字符…...

Unity 制作一个视频播放器(打包后,可在外部编辑并放置新的视频)

效果展示&#xff1a; 在这里&#xff0c;我把视频名称&#xff08;Json&#xff09;和对应的视频资源都放在了StreamingAssets文件夹下&#xff0c;以便于打包后&#xff0c;客户还可以自己在外部增加、删除、修改对应的视频资料。 如有需要&#xff0c;请联细抠抠。...

MySQL-SQL语句

文章目录 一. SQL语句介绍二. SQL语句分类1. 数据定义语言&#xff1a;简称DDL(Data Definition Language)2. 数据操作语言&#xff1a;简称DML(Data Manipulation Language)3. 数据查询语言&#xff1a;简称DQL(Data Query Language)4. 数据控制语言&#xff1a;简称DCL(Data …...

腾讯微信大数据面试题及参考答案

DNS 协议是否使用 UDP? DNS(Domain Name System)协议主要使用 UDP(User Datagram Protocol),但也会使用 TCP(Transmission Control Protocol)。 UDP 是一种无连接的传输协议,它的特点是简单、高效。DNS 在进行域名解析时,大部分情况下使用 UDP。因为 UDP 的开销小,对…...

Python跳动的爱心

系列文章 序号直达链接表白系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…...

计算机启动过程 | Linux 启动流程

注&#xff1a;本文为“计算机启动、 Linux 启动”相关文章合辑。 替换引文部分不清晰的图。 探索计算机的启动过程 Aleksandr Goncharov 2023/04/21 很多人对计算机的启动方式很感兴趣。只要设备开启&#xff0c;这就是魔法开始和持续的地方。在本文中&#xff0c;我们将概…...

反射简单介绍

反射就是从类里拿东西 有的人可能会想为什么不能用io流&#xff0c;从上往下一行一行的读也能获取类中的信息&#xff0c;为什么要用反射呢&#xff1f; 假如我们io流&#xff0c;从左到右一行一行的读取数据&#xff0c;如果碰到局部变量和成员变量同名&#xff0c;怎么区分&a…...

工具篇--GitHub Desktop 使用

文章目录 前言一、GitHub Desktop 的使用&#xff1a;1.1 通过官网下载GitHub Desktop和安装&#xff1a;1.2 安装和使用&#xff1a;1.2.1 填充自己的标识&#xff1a;1.2.3 克隆项目&#xff1a;1.2.4 git 常用忽略项配置&#xff1a; 二、代码的更新和提交&#xff1a;2.1 代…...

单臂路由配置

知识点 单臂路由指在路由器上的一个接口配置子接口&#xff08;逻辑接口&#xff09;来实现不同vlan间通信 路由器上的每个物理接口都可以配置多个子接口&#xff08;逻辑接口&#xff09; 公司的财务部、技术部和业务部有多台计算机&#xff0c;它们使用一台二层交换机进行互…...

河工oj第七周补题题解2024

A.GO LecturesⅠ—— Victory GO LecturesⅠ—— Victory - 问题 - 软件学院OJ 代码 统计 #include<bits/stdc.h> using namespace std;double b, w;int main() {for(int i 1; i < 19; i ) {for(int j 1; j < 19; j ) {char ch; cin >> ch;if(ch B) b …...

卷积的数学原理与作用

一、一维卷积 &#xff08;一&#xff09;定义 数学定义 给定一个输入序列 x [ x 1 , x 2 , ⋯ , x n ] x [x_1,x_2,\cdots,x_n] x[x1​,x2​,⋯,xn​] 和一个卷积核&#xff08;滤波器&#xff09; k [ k 1 , k 2 , ⋯ , k m ] k [k_1,k_2,\cdots,k_m] k[k1​,k2​,⋯,…...

路由介绍.

RIB和FIB Routing Information Base&#xff08;RIB&#xff09;&#xff0c;即路由信息库&#xff0c;是存储在路由器或联网计算机中的一个电子表格或类数据库&#xff0c;它保存着指向特定网络地址的路径信息&#xff0c;包括路径的路由度量值。RIB的主要目标是实现路由协议…...

CTFshow-命令执行(Web29-40)

CTFshow-命令执行(Web29-40) CTFWeb-命令执行漏洞过滤的绕过姿势_绕过空格过滤-CSDN博客 总结rce&#xff08;远程代码执行各种sao姿势&#xff09;绕过bypass_远程命令执行绕过-CSDN博客 对比两者的源代码&#xff0c;我们发现&#xff0c;cat指令把flag.php的内容导出后依…...

MySQL锁的类型有哪些

目录 共享锁(share lock)&#xff1a; 排他锁(exclusivelock)&#xff1a; 表锁(table lock)&#xff1a; 行锁&#xff1a; 记录锁(Record lock)&#xff1a; 页锁&#xff1a; 间隙锁&#xff1a; 基于锁的属性分类&#xff1a;共享锁&#xff0c;排他锁。 基于锁的粒…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...