人脸识别Adaface之libpytorch部署
目录
- 1. libpytorch下载
- 2. Adaface模型下载
- 3. 模型转换
- 4. c++推理
- 4.1 前处理
- 4.2 推理
- 4.3 编译运行
- 4.3.1 写CMakeLists.txt
- 4.3.2 编译
- 4.3.3 运行
1. libpytorch下载
参考:
https://blog.csdn.net/liang_baikai/article/details/127849577
下载完成后,将其解压到/usr/local下
2. Adaface模型下载
https://github.com/mk-minchul/AdaFace?tab=readme-ov-file

WebFace4M模型准确率最高,R50 WebFace4M和R100 WebFace12M的准确率十分接近,但耗时却低了不少,所以建议使用R50 WebFace4M
3. 模型转换
下载Adaface源码,并将下面代码放到其目录下执行即可
model_trans.py
import torch
import torch.nn as nn
from head import AdaFace
import net
import onnxruntime as ort
import numpy as np
import onnx# 加载模型
adaface_models = {
# 'ir_101':"./adaface_ir101_ms1mv2.ckpt",'ir_50':"./adaface_ir50_webface4m.ckpt",
}
architecture = 'ir_50'model = net.build_model(architecture)
#model = AdaFace()
statedict = torch.load(adaface_models[architecture],map_location=torch.device('cpu'),weights_only=True)['state_dict']
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')}model.load_state_dict(model_statedict, strict=True)for p in model.parameters():p.requires_grad = Falsemodel.eval()
device = torch.device("cpu");
model_cpu = model.to(device)# 创建一个示例输入
example_input = torch.rand(1, 3, 112, 112) # 假设输入大小为 (1, 3, 112, 112)# 转换为 TorchScript
traced_model = torch.jit.trace(model_cpu, example_input)# 保存模型
traced_model.save('adaface.pt')# 导出为 ONNX 格式
#onnx_file_path = 'adaface.onnx' # 输出文件名
#torch.onnx.export(model, example_input, onnx_file_path,
# export_params=True)#opset_version=11, # ONNX 版本#do_constant_folding=True, # 是否进行常量折叠#input_names=['input'], # 输入名称#output_names=['output'], # 输出名称#dynamic_axes={'input': {0: 'batch_size'}, # 动态 batch size# 'output': {0: 'batch_size'}})
4. c++推理
4.1 前处理
- resize人脸图片为112x112
- 归一化
- BGR->RGB
- 转换为tensor
- N H W C->N C H W
- reshape 1,3,112,112(模型输入shape)
4.2 推理
- load model
- 读取图片
- 人脸检测对齐
- 前处理
- model.forward推理
#include <torch/script.h>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>torch::Tensor to_input(const cv::Mat& pil_rgb_image) {cv::Mat brg_img;cv::resize(pil_rgb_image, brg_img, cv::Size(112, 112));brg_img.convertTo(brg_img, CV_32FC3, 1.0 / 255.0);brg_img = (brg_img - 0.5) / 0.5;cv::cvtColor(brg_img, brg_img, cv::COLOR_BGR2RGB);torch::Tensor tensor = torch::from_blob(brg_img.data, {1, brg_img.rows, brg_img.cols, 3}, torch::kFloat32);tensor = tensor.permute({0, 3, 1, 2});tensor = tensor.reshape({1, 3, 112, 112});tensor = tensor.to(at::kCPU);return tensor;
}int main() {// 模型加载torch::jit::script::Module model;try {model = torch::jit::load("./adaface.pt");//model.eval();model.to(at::kCPU);} catch (const c10::Error& e) {std::cerr << "Error loading the model\n";return -1;}// 读取图片std::vector<std::string> images;getAllFiles("./images", images, {"jpg", "jpeg", "png"});// 人脸检测器初始化OpenCVFace open_cv_face;open_cv_face.Init("./models/face_detection_yunet_2023mar.onnx","./models/face_recognition_sface_2021dec.onnx", 0.9, 0.5);for (const auto &image_path : images){// Load an image using OpenCVcv::Mat orig_img = cv::imread(image_path);if (orig_img.empty()) {std::cerr << "Could not read the image\n";return -1;}auto detect_start = GetCurTimestamp();std::vector<cv::Mat> aligned_faces;// 人脸检测对齐open_cv_face.detectAndAlign(orig_img, aligned_faces);//std::cout<<"detect use time is "<< (GetCurTimestamp() - detect_start)<<std::endl;for (const auto &face:aligned_faces){cv::Mat img(face);auto img_tensor = to_input(img);// Inference 推理std::vector<torch::jit::IValue> inputs;inputs.push_back(img_tensor);auto output = model.forward(inputs);// Check if the output is a tupleif (output.isTuple()) {auto output_tuple = output.toTuple();if (output_tuple->elements().size() > 0) {at::Tensor output_tensor = output_tuple->elements()[0].toTensor();//std::cout << output_tensor << std::endl;} else {std::cerr << "Output tuple is empty\n";return -1;}} else {at::Tensor output_tensor = output.toTensor();//std::cout << output_tensor << std::endl;}}}return 0;
}
注意:本代码的人脸检测和对齐使用opencv的Yunet和SFace实现, 地址
4.3 编译运行
4.3.1 写CMakeLists.txt
本工程依赖opencv和libtorch,一并下载解压到/usr/local下即可。
cmake_minimum_required(VERSION 3.22.1)
project(adaface-demo)set(QMAKE_CXXFLAGS "-std=c++17")
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)include_directories(/usr/local/include)
link_directories(/usr/local/lib)set(OPENCV_VERSION "4.9.0")
set(OPENCV_INSTALLATION_PATH "/usr/local/opencv4" CACHE PATH "Where to look for OpenCV installation")# Find OpenCV
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})if (AARCH64)set(Torch_DIR /usr/local/libtorch/lib/python3.10/site-packages/torch/share/cmake/Torch)
else ()set(Torch_DIR /usr/local/libtorch/share/cmake/Torch)
endif ()find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})AUX_SOURCE_DIRECTORY(./src DIR_SRCS)
add_executable(adaface-demo ${DIR_SRCS})target_link_libraries(adaface-demo ${OpenCV_LIBS} ${TORCH_LIBRARIES})
4.3.2 编译
mkdir build
cd build
cmake ..
4.3.3 运行
将模型文件adaface.py拷贝到bin目录下
cd ../bin
./main
相关文章:
人脸识别Adaface之libpytorch部署
目录 1. libpytorch下载2. Adaface模型下载3. 模型转换4. c推理4.1 前处理4.2 推理4.3 编译运行4.3.1 写CMakeLists.txt4.3.2 编译4.3.3 运行 1. libpytorch下载 参考: https://blog.csdn.net/liang_baikai/article/details/127849577 下载完成后,将其解…...
vue3+echarts+websocket分时图与K线图实时推送
一、父组件代码: <template> <div class"chart-box" v-loading"loading"> <!-- tab导航栏 --> <div class"tab-box"> <div class"tab-list"> <div v-for"(item, index) in tabList…...
小程序开发实战项目:构建简易待办事项列表
随着移动互联网的飞速发展,小程序以其便捷性、即用即走的特点,成为了连接用户与服务的重要桥梁。无论是电商平台的购物助手,还是餐饮行业的点餐系统,小程序都在各个领域发挥着巨大的作用。 小程序开发基础 1. 小程序简介 小程序是…...
SD Express 卡漏洞导致笔记本电脑和游戏机遭受内存攻击
Positive Technologies 最近发布的一份报告揭示了一个名为 DaMAgeCard 的新漏洞,攻击者可以利用该漏洞利用 SD Express 内存卡直接访问系统内存。 该漏洞利用了 SD Express 中引入的直接内存访问 (DMA) 功能来加速数据传输速度,但也为对支持该标准的设备…...
前端node环境安装:nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)
需求:在做前端开发的时候,有的时候 这个项目需要 node 14 那个项目需要 node 16,我们也不能卸载 安装 。这岂不是很麻烦。这个时候 就需要 一个工具 来管理我们的 node 版本和 npm 版本。 下面就分享一个 nvm 工具 用来管理 node 版本。 这个…...
java之集合(详细-Map,Set,List)
1集合体系概述 1.1集合的概念 集合是一种容器,用来装数据的,类似于数组,但集合的大小可变,开发中也非常常用。 1.2集合分类 集合分为单列集合和多列集合 Collection代表单列集合,每个元素(数据ÿ…...
常见LeetCode-Saw200
用来记录需要知道见过的题型: LeetCode2-两数相加 说明:以链表的形势给了你每个位的数字,而且是逆序,直接从开头(个位)遍历相加。带上进位即可。有一个为空就直接计算另一个和进位。 LeetCode-3.无重复字符…...
Unity 制作一个视频播放器(打包后,可在外部编辑并放置新的视频)
效果展示: 在这里,我把视频名称(Json)和对应的视频资源都放在了StreamingAssets文件夹下,以便于打包后,客户还可以自己在外部增加、删除、修改对应的视频资料。 如有需要,请联细抠抠。...
MySQL-SQL语句
文章目录 一. SQL语句介绍二. SQL语句分类1. 数据定义语言:简称DDL(Data Definition Language)2. 数据操作语言:简称DML(Data Manipulation Language)3. 数据查询语言:简称DQL(Data Query Language)4. 数据控制语言:简称DCL(Data …...
腾讯微信大数据面试题及参考答案
DNS 协议是否使用 UDP? DNS(Domain Name System)协议主要使用 UDP(User Datagram Protocol),但也会使用 TCP(Transmission Control Protocol)。 UDP 是一种无连接的传输协议,它的特点是简单、高效。DNS 在进行域名解析时,大部分情况下使用 UDP。因为 UDP 的开销小,对…...
Python跳动的爱心
系列文章 序号直达链接表白系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…...
计算机启动过程 | Linux 启动流程
注:本文为“计算机启动、 Linux 启动”相关文章合辑。 替换引文部分不清晰的图。 探索计算机的启动过程 Aleksandr Goncharov 2023/04/21 很多人对计算机的启动方式很感兴趣。只要设备开启,这就是魔法开始和持续的地方。在本文中,我们将概…...
反射简单介绍
反射就是从类里拿东西 有的人可能会想为什么不能用io流,从上往下一行一行的读也能获取类中的信息,为什么要用反射呢? 假如我们io流,从左到右一行一行的读取数据,如果碰到局部变量和成员变量同名,怎么区分&a…...
工具篇--GitHub Desktop 使用
文章目录 前言一、GitHub Desktop 的使用:1.1 通过官网下载GitHub Desktop和安装:1.2 安装和使用:1.2.1 填充自己的标识:1.2.3 克隆项目:1.2.4 git 常用忽略项配置: 二、代码的更新和提交:2.1 代…...
单臂路由配置
知识点 单臂路由指在路由器上的一个接口配置子接口(逻辑接口)来实现不同vlan间通信 路由器上的每个物理接口都可以配置多个子接口(逻辑接口) 公司的财务部、技术部和业务部有多台计算机,它们使用一台二层交换机进行互…...
河工oj第七周补题题解2024
A.GO LecturesⅠ—— Victory GO LecturesⅠ—— Victory - 问题 - 软件学院OJ 代码 统计 #include<bits/stdc.h> using namespace std;double b, w;int main() {for(int i 1; i < 19; i ) {for(int j 1; j < 19; j ) {char ch; cin >> ch;if(ch B) b …...
卷积的数学原理与作用
一、一维卷积 (一)定义 数学定义 给定一个输入序列 x [ x 1 , x 2 , ⋯ , x n ] x [x_1,x_2,\cdots,x_n] x[x1,x2,⋯,xn] 和一个卷积核(滤波器) k [ k 1 , k 2 , ⋯ , k m ] k [k_1,k_2,\cdots,k_m] k[k1,k2,⋯,…...
路由介绍.
RIB和FIB Routing Information Base(RIB),即路由信息库,是存储在路由器或联网计算机中的一个电子表格或类数据库,它保存着指向特定网络地址的路径信息,包括路径的路由度量值。RIB的主要目标是实现路由协议…...
CTFshow-命令执行(Web29-40)
CTFshow-命令执行(Web29-40) CTFWeb-命令执行漏洞过滤的绕过姿势_绕过空格过滤-CSDN博客 总结rce(远程代码执行各种sao姿势)绕过bypass_远程命令执行绕过-CSDN博客 对比两者的源代码,我们发现,cat指令把flag.php的内容导出后依…...
MySQL锁的类型有哪些
目录 共享锁(share lock): 排他锁(exclusivelock): 表锁(table lock): 行锁: 记录锁(Record lock): 页锁: 间隙锁: 基于锁的属性分类:共享锁,排他锁。 基于锁的粒…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
