当前位置: 首页 > news >正文

绘制折线图遇到问题记录

绘制折线图

主要参考:https://blog.csdn.net/qq_38029916/article/details/121611066

对应代码

import csv
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['axes.unicode_minus'] = Falsepd_data = pd.read_csv("results.csv")
# %%capture output
## 捕获横坐标
epoch_data = pd_data["epoch"].astype(int).values
type(pd_data["epoch"])%%capture output
pd_data["train/box_loss"][np.isinf(pd_data["train/box_loss"])] = np.nan
train_cls_loss_data = pd_data["train/box_loss"].fillna(method="backfill",axis=0,inplace=False).astype(float).valuesdef get_data(data:pd.pandas)->None:if np.inf in data.values or np.nan in data.values:data[np.isinf(data)] = np.nandata = data.fillna(method="backfill",axis=0,inplace = False).astype(float).valuesreturn datadef main():## train_box_loss dataepochs = pd_data["epoch"].astype(int).valuestrain_box_loss = get_data(pd_data["train/box_loss"])train_cls_loss = get_data(pd_data["train/cls_loss"])train_dfl_loss = get_data(pd_data["train/dfl_loss"])val_box_loss = get_data(pd_data["val/box_loss"])val_cls_loss = get_data(pd_data["val/cls_loss"])val_dfl_loss = get_data(pd_data["val/dfl_loss"])colors = np.random.rand(6,3)fig,axes = plt.subplots(2,3 , figsize = (15,10))# Plot the train lossesaxes[0, 0].plot(epochs, train_box_loss, color=colors[0], label='train_box_loss')axes[0, 1].plot(epochs, train_cls_loss, color=colors[1], label='train_cls_loss')axes[0, 2].plot(epochs, train_dfl_loss, color=colors[2], label='train_dfl_loss')# Plot the validation lossesaxes[1, 0].plot(epochs, val_box_loss, color=colors[3], label='val_box_loss')axes[1, 1].plot(epochs, val_cls_loss, color=colors[4], label='val_cls_loss')axes[1, 2].plot(epochs, val_dfl_loss, color=colors[5], label='val_dfl_loss')# Set labels and titles for each plotaxes[0, 0].set_title('Train Box Loss')axes[0, 1].set_title('Train CLS Loss')axes[0, 2].set_title('Train DFL Loss')axes[1, 0].set_title('Validation Box Loss')axes[1, 1].set_title('Validation CLS Loss')axes[1, 2].set_title('Validation DFL Loss')# Set common x and y labelsfor ax in axes.flat:ax.set_xlabel('Epoch')ax.set_ylabel('Loss')ax.legend()# Adjust layout to prevent overlapplt.tight_layout()plt.savefig("./result.jpg")# Show the plotplt.show()

遇到问题👇

问题1-缺失字体

查看对应的绘制图时,少了字体,对应解决方法就是下载字体文件到指定目录中。

  1. 到该链接下载字体
  2. 寻找matplotlib的路径:/root/miniconda3/envs/yolo/lib/python3.10/site-packages/matplotlib/mpl-data/fonts/ttf
  3. 删除缓存路径,打印该路径后进入该路径rm *。
import matplotlib as mpl
print(mpl.get_cachedir())

问题2-inf值识别&处理

遇到的问题,比如inf需要识别。

Q:为什么会出现inf值?👇
A:因为在有数据的时候除0了,数值写入会将值写为inf。ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

Q:判断某一列中是否存在inf值?👇
A:首先将该列值更改为np数组,然后进行判断。

col_data = pd['col_name'].astype(float).values
if np.inf in col_data:print("np.inf存在")

Q:inf值怎么处理?👇
A:首先替换inf为nan值==》df['col_name'][np.isinf(df['col_name'])] = np.nan
将nan值替换为需要的值,我选用的是和前后一致。data = data.fillna(method="backfill",axis=0,inplace = False).astype(float).values


参考文献

  • 字体缺失👇
    • https://blog.csdn.net/weixin_40566713/article/details/137275377
  • inf值处理👇
    • https://blog.csdn.net/sinat_26811377/article/details/103126133
    • https://blog.csdn.net/yangnianxiang/article/details/121769037
    • https://blog.csdn.net/sinat_28442665/article/details/104901143
    • https://blog.csdn.net/qq_35190319/article/details/89280372

相关文章:

绘制折线图遇到问题记录

绘制折线图 主要参考:https://blog.csdn.net/qq_38029916/article/details/121611066 对应代码 import csv import matplotlib.pyplot as plt import pandas as pd import numpy as np plt.rcParams[font.sans-serif] [SimHei] plt.rcParams[font.family] sans…...

python 调Qt C++ 写法配置和坑点

python 示例写法 和调c动态库一样 通过回调函数方式 将python函数注册到c 动态库中 from ctypes import *def DllCall(nParam, nFlag):print(nParam, nFlag)z2 0.6z3 0.4z4 0.0z5 0.3z6 0.5z7 0.8z8 0.3z9 0.9strData str(z2) str(z3) str(z4) str(z5)…...

css设置透明的几种办法

在CSS中,有几种方法可以设置元素的透明度。以下是主要的几种方式: 1. 使用 opacity 属性 定义:opacity 属性用于设置元素的整体透明度,包括其内容和背景。取值范围:取值从0(完全透明)到1&…...

刷题日志【4】

目录 1、猜数字大小 1、猜数字大小 题意有点抽象,我大概讲一下,就是在1——n里面会有一个目标数,我们通过猜数字的方式逼近这个数字,直到解出这个数,之前我们是用二分法求最快达到求解的问题,这道题多了每…...

如何制作自己的字体文件.ttf

日常编程中,一些常用的符号可以直接用来当做图标使用,不需要引入过多的资源文件(例如:ico、png、svg等)十分方便! 笔者发现iconfont网站可以选择自己需要的图标,制作成.ttf文件来直接使用&…...

gradle在IDEA 中无法使用的启动守护线程的问题

最近打开一个比较早的项目,Gradle 配置没有问题,IDEA 打开Java项目却不能初始化守护线程,UI 上只能看到失败,看不到具体原因。 首先尝试了升级最新的gradle 版本8.11, 实际上这个版本在本地命令行都不能正常工作,没有…...

Spring Boot 配置多数据源并手动配置事务

Spring Boot 配置多数据源并手动配置事务 一、为什么多数据源需要手动配置?二、配置多数据源1. 数据源配置类 (DataSourceConfig)2. 主数据库 MyBatis 配置类 (PrimaryDbMyBatisConfig)3. 从数据库 MyBatis 配置类 (SecondaryDbMyBatisConfig)4. application.yml 配…...

YashanDB 23.2 YAC 共享集群部署和使用自带YMP迁移工具进行数据迁移,效果很city

1. 环境准备 本文以经典架构(2 台服务器,1 共享存储且包含 3 个及以上 LUN)为例,搭建双实例单库的共享集群环境。 主机名 IP 版本 CPU 内存 硬盘 用途 yac1 192.168.50.60 Kylin-Server-V10-SP3 4C 8G 100G YAC 集群…...

【数学】矩阵的逆与伪逆 EEGLAB

文章目录 前言matlab代码作用EEGLAB 中的代码总结参考文献 前言 在 EEGLAB 的使用中,运行程序时出现了矩阵接近奇异值,或者缩放错误。结果可能不准确。RCOND 1.873732e-20 的 bug,调查 EEGLAB 后发现是 raw 数据的问题。 matlab代码 A_1 …...

狐猬编程 C++ L3 第7课 字符串入门 元音字母

给你一个所有字符都是字母的字符串, 请输出其中元音字母的个数。(提示: 二十六个字母中的五个元音字母是 a, e, i, o, u; 所有字符有大小写区别。) 输入格式 仅一行, 包…...

APP UI自动化测试的思路小结

在移动互联网飞速发展的今天,APP质量直接影响用户体验。为了保障UI功能的稳定性和一致性,APP UI自动化测试已经成为各大企业必不可少的一环。那么如何设计一套高效的测试方案?本篇为你总结关键思路! 如何从零构建UI自动化测试&am…...

2412d,d的7月会议

原文 总结 卡斯滕 Carsten说,Decard一直在大量试验WebAssembly.他们一直在把d运行时挖出来,直到它工作.他们在浏览器中运行了一些库函数,并试了不同虚机. 他们在移动方面遇见了很多问题,因为不同芯片按不同方式工作.他们想让他们的整个SDK在WASM上运行,但可能需要一年时间才…...

ANOMALY BERT 解读

出处: ICLR workshop 2023 代码:Jhryu30/AnomalyBERT 可视化效果: 一 提出动机 动机:无监督 TSAD 领域内,“训练集” 也缺失:真值标签(GT);换句话说,一个…...

定时/延时任务-Netty时间轮源码分析

文章目录 1. 概要2. 参数3. 构造器4. 回收5. 启动时间轮 - start6. 停止时间轮 - stop7. 添加任务8. 工作线程 - Worker8.1 线程参数8.2 核心逻辑-run8.3 指针跳动到下一个tick8.4 处理要取消的任务8.5 把新增的任务加入时间轮8.6 执行过期任务 9. HashedWheelTimeout9.1 属性9…...

React的一些主要优点是?

React 一些主要的优点: 组件化架构: React 通过组件化的方式构建 UI,允许开发者将复杂的应用拆分成可重用的小部分。这使得代码更加模块化和可维护。 虚拟 DOM: React 使用虚拟 DOM 来提高性能。它通过在内存中维护一个与应用状态…...

RabbitMQ 基本使用方法详解

RabbitMQ 基本使用方法 在你的代码中,涉及到了 RabbitMQ 的基本使用,包括队列定义、交换机的配置、消息的发送与接收等内容。下面我将详细总结 RabbitMQ 的基本使用方法,重点解释如何在 Spring Boot 项目中与 RabbitMQ 集成。 1. 引入依赖 …...

[leetcode100] 101. 对称二叉树

https://leetcode.cn/problems/symmetric-tree/description/?envTypestudy-plan-v2&envIdtop-100-liked 心血来潮,突然感觉很久没做leetcode,刷一题。 看到“简单”,哦吼,应该很快吧。 结果真是《简单》 题目描述 给你一个…...

Vue.createApp的对象参数

目录 template 属性 data 属性 methods 属性 疑问 function 函数的两种写法 methods 属性中 this 的指向 总结 Vue 实例是通过 Vue.createApp() 创建的,该函数需要接收一个对象作为参数,该对象可添加 template、data、methods 等属性。 template …...

短信验证码burp姿势

首先声明,本文仅仅作为学习使用,因个人原因导致的后果,皆有个人承担,本人没有任何责任。 在之前的burp学习中,我们学习了图片验证码的突破,但是现实中还有很多短信验证码,在此我介绍几种短信验…...

ubuntu WPS安装

需要进入国外官网下载 [OFFICIAL] WPS Office-Free Office Download for PC & Mobile, AI-Powered Office Suite 安装 sudo dpkg -i wps-office_11.1.0.11723.XA_amd64.deb 提示缺失字体操作 下载字体包 链接: https://pan.baidu.com/s/1EVzb3F8Ry_dJ_hj0A4MksQ 提取…...

龙虎榜——20250610

上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...