当前位置: 首页 > news >正文

【AI知识】过拟合、欠拟合和正则化

一句话总结: 过拟合和欠拟合是机器学习中的两个相对的概念,正则化是用于解决过拟合的方法。

1. 欠拟合: 指模型在训练数据上表现不佳,不能充分捕捉数据的潜在规律,导致在训练集和测试集上的误差都很高。欠拟合意味着模型太简单,无法有效地学习数据中的重要特征,导致其预测能力差。

  • 欠拟合的表现: 训练误差较高 / 测试误差较高 / 模型复杂度过低

  • 欠拟合的原因:

    • 模型过于简单,无法捕捉数据中的复杂模式。

    • 模型使用的特征(输入变量)太少,或没有选择合适的特征,导致可能无法捕捉到数据中的重要信息。

    • 训练时间过短,模型还没充分从数据中学习到有用的模式,如迭代次数过少或训练轮次不足。

    • 过度正则化也可能导致欠拟合,正则化是为了防止过拟合,但如果正则化过强,可能会使模型变得过于简单。

    • 如果数据中噪声过大,且模型没有足够的能力来拟合这些噪声的规律时,也可能会表现出欠拟合的现象。

  • 如何解决欠拟合: 增加模型的复杂度 / 增加特征 / 训练时间增加 / 减少正则化强度 / 数据增强

2. 过拟合(Overfitting): 指的是模型在训练数据上表现得非常好,但在新的、未见过的数据(如测试集或验证集)上表现不佳的现象。即模型对训练数据的拟合程度过高,捕捉了数据中的噪声、细节和偶然性,而没有学习到数据的普遍规律,从而失去了对新数据的泛化能力

  • 过拟合的表现: 训练集表现很好,测试集表现差 / 模型的复杂度过高,能够拟合数据的每个小波动和噪声

  • 过拟合的原因:

    • 当模型的参数太多,或者模型的复杂度过高时,它会能够很好地拟合训练集中的所有数据点,包括数据中的噪声和细节。

    • 训练数据量太少,缺乏足够的数据来支持模型的泛化,使得模型无法学习到数据的普遍规律,容易出现过拟合。

    • 训练时间过长,模型可能会开始“记住”训练数据,而不是学习数据的普遍规律,从而出现过拟合。

    • 训练数据中的噪声(如错误的标签、输入的异常值等)可能会导致模型过拟合,模型会尝试拟合噪声,而不是学习有意义的模式。

    • 缺乏正则化,正则化是控制模型复杂度的一种方法,如果没有适当的正则化,模型容易过度拟合训练数据。

  • 如何解决过拟合:

    • 使用简单的模型,减少参数量。

    • 增加训练数据量,更多的数据有助于模型学习到更稳定的模式,而不是记住训练数据中的噪声。

    • 数据增强(Data Augmentation),如果增加数据量不容易实现,可以通过数据增强来生成更多的训练数据。数据增强技术通过对现有数据进行旋转、平移、裁剪、缩放、翻转等操作,来增加数据集的多样性,在图像处理任务中非常常见。

    • 正则化(Regularization),如L1/L2 正则化,Dropout。

    • 交叉验证(Cross-validation),通过将数据集分成多个子集,进行多次训练和验证,模型在不同的验证集上的表现可以帮助评估是否出现过拟合。

    • 早停(Early Stopping),在训练过程中,如果模型在验证集上的性能开始下降,说明模型可能开始过拟合训练数据。早停技术会在模型表现不再提升时停止训练,从而防止过拟合。

    • 集成方法(Ensemble Methods),通过组合多个模型的结果来构建一个更强的模型,常用的方法如随机森林。

    • 降维(Dimensionality Reduction)技术,如主成分分析(PCA)可以通过减少输入数据的维度来降低模型的复杂度,防止模型学习到数据中的噪声。

3. 正则化(Regularization): 是机器学习中用于防止模型过拟合的一种技术,目标是限制模型的复杂性。它通过对模型的参数施加限制或惩罚,避免模型在训练数据上过度“记忆”,而是学到一些更一般化的规律,从而提高模型的泛化能力。通常,正则化方法会在损失函数中增加一个正则化项,使得损失函数不仅考虑模型的预测误差,还考虑模型的复杂度。

常见的正则化方法:

  • L1 正则化(Lasso): 通过在损失函数中增加参数权重的绝对值和来限制模型的复杂度。L1 正则化的损失函数如下,其中, w i w_i wi是模型的参数,λ 是正则化超参数,控制正则化的强度。
    在这里插入图片描述
    作用和特点:

    • 稀疏性(Sparsity): L1 正则化的一个重要特点是它能够产生稀疏模型。即,通过惩罚权重的绝对值,L1 正则化可以将某些权重压缩为零,从而自动进行特征选择。这意味着一些特征会被“丢弃”,使得模型变得更加简单和高效。

    • 特征选择: L1 正则化适用于特征数很多的情况,尤其是当很多特征可能与输出无关时。通过将不相关特征的权重置为零,L1 正则化有效地选择了最重要的特征。

    • 缺点: 对特征之间的共线性不够鲁棒。如果数据中的特征高度相关,L1 正则化通常会选择其中一个特征,而忽略其他相关特征。

  • L2 正则化(Ridge): 通过在损失函数中增加参数权重的平方和来限制模型复杂度。L2 正则化的损失函数如下,其中, w i w_i wi是模型的参数,λ 是正则化超参数,控制正则化的强度。
    在这里插入图片描述
    作用和特点:

    • 权重的平滑: L2 正则化的作用是将权重的绝对值尽可能地减小,但不会完全使其为零。它鼓励模型权重较小且均匀分布,从而防止某些特征对模型的影响过大,避免过拟合。
    • 不产生稀疏解: 与 L1 正则化不同,L2 正则化不会使得某些权重变为零,而是使所有权重都较小,模型的复杂度得到控制。
    • 对特征间共线性鲁棒: 在特征高度相关的情况下,L2 正则化通常会均匀地分配权重,而不是选择其中一个特征。
    • 缺点: 不具备特征选择功能。与 L1 正则化不同,L2 正则化不会将不相关的特征的权重压缩为零,因此无法自动进行特征选择。
  • Dropout: 是一种常用的神经网络正则化方法。它通过在训练过程中随机“丢弃”一部分神经元(即将其输出设置为零)来防止神经网络过拟合。
    Dropout 使得神经网络在每次训练时都使用不同的子网络进行训练,从而防止网络对特定神经元的依赖,增强了模型的泛化能力。

  • 早停(Early Stopping): 在训练过程中监控验证集的误差,当验证集误差停止改善时,提前停止训练。这可以防止模型在训练数据上训练过长时间,从而避免过拟合。

  • 数据增强(Data Augmentation): 主要用于图像、文本等领域。通过对训练数据进行一系列变换(如旋转、缩放、裁剪、翻转等),生成新的数据样本,从而增加训练集的多样性,降低模型对训练数据的过度依赖,从而防止过拟合。

相关文章:

【AI知识】过拟合、欠拟合和正则化

一句话总结: 过拟合和欠拟合是机器学习中的两个相对的概念,正则化是用于解决过拟合的方法。 1. 欠拟合: 指模型在训练数据上表现不佳,不能充分捕捉数据的潜在规律,导致在训练集和测试集上的误差都很高。欠拟合意味着模…...

计算机毕设-基于springboot的航空散货调度系统的设计与实现(附源码+lw+ppt+开题报告)

博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...

视图、转发与重定向、静态资源处理

目录 视图 默认视图 视图机制原理 自定义视图 请求转发与重定向 静态资源处理 视图 每个视图解析器都实现了 Ordered 接口并开放出一个 order 属性 可以通过 order 属性指定解析器的优先顺序,order 越小优先级越高 默认是最低优先级,Integer.MAX_…...

优选算法——分治(快排)

1. 颜色分类 题目链接:75. 颜色分类 - 力扣(LeetCode) 题目展示: 题目分析:本题其实就要将数组最终分成3块儿,这也是后面快排的优化思路,具体大家来看下图。 这里我们上来先定义了3个指针&…...

【Linux系统】文件系统

Windows 和 Linux 的文件系统: windows:NTFS —> NTFS:磁盘大于目录:目录是磁盘的一部分。ubuntu :EXT4 —> EXT4: 目录大于磁盘:磁盘是目录的一部分。 Windows文件系统的特点 基于分区的文件系统: Windows…...

javaweb的基础

文章的简介: 页面的展示(HTML)页面的修改、绑定、弹窗(js的dom、bom等)页面的请求(Ajax) 1、在HTML中用标签和css样式实现了浏览器页面。 2、用JS实现页面内容(图片,复选框、文本颜色内容)的修改和弹框&…...

家里养几条金鱼比较好?

金鱼,作为备受喜爱的家庭水族宠物,其饲养数量一直是众多养鱼爱好者关注的焦点。究竟养几条金鱼最为适宜,实则需要综合考量多方面因素,方能达到美观、健康与和谐的理想养鱼境界。 从风水文化的视角来看,金鱼数量有着诸…...

写作词汇积累:差池、一体两面、切实可行极简理解

差池 【差池】可以是名词,是指意外的事或错误。 【差池】也可以是形容词,是指参差不齐、差劲或不行。 1. 由于操作不当,导致这次实验出现了【差池】,我们需要重新分析原因并调整方案。(名词,表示意外的事…...

移远EC200A-CN的OPENCPU使用GO开发嵌入式程序TBOX

演示地址: http://134.175.123.194:8811 admin admin 演示视频: https://www.bilibili.com/video/BV196q2YQEDP 主要功能 WatchDog 1. 守护进程 2. OTA远程升级 TBOX 1. 数据采集、数据可视化、数据上报(内置Modbus TCP/RTU/ASCII,GPS协…...

LEED绿色建筑认证最新消息

关于LEED绿色建筑认证的最新消息,可以从以下几个方面进行概述: 一、认证体系更新与发展 LEED认证体系不断更新和完善,以更好地适应全球绿色建筑的发展趋势。例如,LEED v4能源更新已通过投票,并于2024年3月1日全面启用…...

SpringBoot中集成常见邮箱中容易出现的问题

本来也没打算想写得。不过也是遇到一些坑&#xff0c;就记录一下吧&#xff0c;也折腾了小半天 1.maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency>2…...

webstorm开发uniapp(从安装到项目运行)

1、下载uniapp插件 下载连接&#xff1a;Uniapp Tool - IntelliJ IDEs Plugin | Marketplace &#xff08;结合自己的webstorm版本下载&#xff0c;不然解析不了&#xff09; 将下载到的zip文件防在webstorm安装路径下&#xff0c;本文的地址为&#xff1a; 2、安装uniapp插…...

C# 探险之旅:第七节 - 条件判断(三元判断符):? : 的奇妙冒险

嘿&#xff0c;勇敢的探险家们&#xff01;欢迎来到 C# 编程世界的奇妙之旅的第七节。今天&#xff0c;我们要探索的是一个神秘而强大的宝藏——三元判断符 ? :。别怕&#xff0c;它听起来复杂&#xff0c;但实际上比找宝藏还简单&#xff01; 场景设定&#xff1a;宝藏的选择…...

FlinkCDC实战:将 MySQL 数据同步至 ES

&#x1f4cc; 当前需要处理的业务场景: 将订单表和相关联的表(比如: 商品表、子订单表、物流信息表)组织成宽表, 放入到 ES 中, 加速订单数据的查询. 同步数据到 es. 概述 1. 什么是 CDC 2. 什么是 Flink CDC 3. Flink CDC Connectors 和 Flink 的版本映射 实战 1. 宽表查…...

debug小记

红框&#xff1a; 步过&#xff1a;遇到方法不想进入方法 绿框&#xff1a;代码跑在第几行也可以看见 蓝框&#xff1a;可以显示变量的值&#xff0c;三种方式都可以看变量的值...

Qt C++ 显示多级结构体,包括结构体名、变量名和值

文章目录 mainwindow.hmainwindow.cppstructures.hmain.cpp QTreeView 和 QStandardItemModel 来实现。以下是实现这一功能的步骤和示例代码&#xff1a; 定义多级结构体&#xff1a; 假设你有一个多级结构体&#xff0c;如下所示&#xff1a; struct SubStruct {int subValue…...

【JAVA】旅游行业中大数据的使用

一、应用场景 数据采集与整合&#xff1a;全面收集旅游数据&#xff0c;如客流量、游客满意度等&#xff0c;整合形成统一数据集&#xff0c;为后续分析提供便利。 舆情监测与分析&#xff1a;实时监测旅游目的地的舆情信息&#xff0c;运用NLP算法进行智能处理&#xff0c;及…...

【AI+网络/仿真数据集】1分钟搭建云原生端到端5G网络

导语&#xff1a; 近期智慧网络开放创新平台上线了端到端网络仿真能力&#xff0c;区别于传统的网络仿真工具需要复杂的领域知识可界面操作&#xff0c;该平台的网络仿真能力主打一个小白友好和功能专业。 https://jiutian.10086.cn/open/​jiutian.10086.cn/open/ 端到端仿…...

微服务-01【续】

1.OpenFeign 上篇文章我们利用Nacos实现了服务的治理&#xff0c;利用利用RestTemplate实现了服务的远程调用。但是远程调用的代码太复杂了&#xff1a; 而且这种调用方式&#xff0c;与原本的本地方法调用差异太大&#xff0c;编程时的体验也不统一&#xff0c;一会儿远程调用…...

测试工程师八股文01|Linux系统操作

一、Linux系统操作 1、gzip tar和gzip结合使用 $ tar czf b.tar.gz *txt 以gzip方式打包并且压缩 $ tar xzf b.tar.gz -C btar 以gzip方式解压并解包&#xff0c;如果 btar 目录不存在&#xff0c;则需要先手动创建该目录。 代码第二行&#xff1a;如果没有指定 -C …...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...