Python+OpenCV系列:图像的几何变换
Python + OpenCV 系列:图像的几何变换
引言
在图像处理领域,几何变换是一个非常重要的操作,它可以改变图像的位置、大小、方向或形状。在计算机视觉中,这些操作对于图像预处理、特征提取和图像增强至关重要。本文将介绍如何利用 Python 的 OpenCV 库实现图像的几何变换,包括平移、旋转、缩放、仿射变换和透视变换。
1. 什么是几何变换?
几何变换是通过数学变换将图像的像素从一个位置映射到另一个位置的过程。根据变换的性质,可以将其分为以下几类:
- 平移:移动图像位置。
- 缩放:调整图像尺寸。
- 旋转:改变图像方向。
- 仿射变换:对图像进行线性变换,包括平移、旋转、缩放和倾斜。
- 透视变换:改变图像的视角,使其产生三维效果。
2. OpenCV 几何变换基本操作
2.1 平移
平移是将图像沿 x 和 y 轴移动,公式如下:
[ x ′ y ′ ] = [ x y ] + [ t x t y ] \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} tx \\ ty \end{bmatrix} [x′y′]=[xy]+[txty]
在 OpenCV 中实现:
import cv2
import numpy as np# 读取图像
img = cv2.imread('image.jpg')# 定义平移矩阵 [1, 0, tx] 和 [0, 1, ty]
tx, ty = 100, 50
M = np.float32([[1, 0, tx], [0, 1, ty]])# 执行平移变换
shifted = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))cv2.imshow('Shifted Image', shifted)
cv2.waitKey(0)
cv2.destroyAllWindows()
2.2 缩放
缩放是按比例放大或缩小图像尺寸。在 OpenCV 中,使用 cv2.resize():
# 缩放图像到指定大小
resized = cv2.resize(img, (300, 200))# 按比例缩放
scaled = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)
2.3 旋转
旋转变换公式:
[ x ′ y ′ ] = [ cos θ − sin θ sin θ cos θ ] [ x y ] \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} [x′y′]=[cosθsinθ−sinθcosθ][xy]
在 OpenCV 中实现:
(h, w) = img.shape[:2]
center = (w // 2, h // 2)# 生成旋转矩阵
angle = 45
scale = 1.0
M = cv2.getRotationMatrix2D(center, angle, scale)# 执行旋转
rotated = cv2.warpAffine(img, M, (w, h))
2.4 仿射变换
仿射变换通过三个点的映射定义图像变换。在 OpenCV 中使用 cv2.getAffineTransform():
# 定义原图像和目标图像的三个点
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[10, 100], [200, 50], [100, 250]])# 获取仿射变换矩阵
M = cv2.getAffineTransform(pts1, pts2)# 执行仿射变换
affined = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
2.5 透视变换
透视变换通过四个点定义,可以改变图像的视角:
# 定义原图像和目标图像的四个点
pts1 = np.float32([[56, 65], [368, 52], [28, 387], [389, 390]])
pts2 = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]])# 获取透视变换矩阵
M = cv2.getPerspectiveTransform(pts1, pts2)# 执行透视变换
warped = cv2.warpPerspective(img, M, (300, 300))
3. 实用技巧与注意事项
- 边界处理:几何变换可能会导致部分像素超出边界,建议在设计时考虑图像的大小。
- 插值方法:
cv2.INTER_NEAREST:最近邻插值,速度快但效果较差。cv2.INTER_LINEAR:双线性插值,适用于缩放。cv2.INTER_CUBIC:三次插值,适合高质量变换。
- 变换顺序:如果需要同时进行多个几何变换(如旋转后平移),可以通过矩阵乘法将多个变换合并。
4. 应用场景
- 图像校正:修正拍摄中的倾斜、畸变。
- 特征对齐:人脸识别中常用仿射变换将人脸对齐。
- 数据增强:通过随机几何变换扩展数据集,用于训练深度学习模型。
- 视觉特效:制作图像的动态效果或艺术处理。
5. 总结
几何变换是图像处理中不可或缺的工具,OpenCV 提供了高效的方法来实现各种变换操作。在理解每种变换的数学原理后,可以根据应用场景灵活组合这些技术,从而完成更复杂的图像处理任务。希望这篇文章能够帮助你更好地掌握 Python + OpenCV 中的几何变换操作!
相关文章:
Python+OpenCV系列:图像的几何变换
Python OpenCV 系列:图像的几何变换 引言 在图像处理领域,几何变换是一个非常重要的操作,它可以改变图像的位置、大小、方向或形状。在计算机视觉中,这些操作对于图像预处理、特征提取和图像增强至关重要。本文将介绍如何利用 …...
第P1周:Pytorch实现mnist手写数字识别
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目标 1. 实现pytorch环境配置 2. 实现mnist手写数字识别 3. 自己写几个数字识别试试具体实现 (一)环境 语言环境:Python…...
使用EventLog Analyzer进行Apache日志监控和日志分析
一、什么是Apache日志分析 Apache日志分析是网站管理和维护的重要部分,通过分析Apache服务器生成的日志文件,可以了解网站的访问情况、识别潜在的安全问题、优化网站性能等。 二、Apache日志类型 Apache日志主要有两种类型:访问日志&a…...
PaddleOCR模型ch_PP-OCRv3文本检测模型研究(二)颈部网络
上节研究了PaddleOCR文本检测v3模型的骨干网,本文接着研究其颈部网络。 文章目录 研究起点残注层颈部网络代码实验小结 研究起点 摘取开源yml配置文件,摘取网络架构Architecture中颈部网络的配置如下 Neck:name: RSEFPNout_channels: 96shortcut: True可…...
360极速浏览器不支持看PDF
360安全浏览器采用的是基于IE内核和Chrome内核的双核浏览器。360极速浏览器是源自Chromium开源项目的浏览器,不但完美融合了IE内核引擎,而且实现了双核引擎的无缝切换。因此在速度上,360极速浏览器的极速体验感更佳。 展示自己的时候要在有优…...
【深度学习】深刻理解ViT
ViT(Vision Transformer)是谷歌研究团队于2020年提出的一种新型图像识别模型,首次将Transformer架构成功应用于计算机视觉任务中。Transformer最初应用于自然语言处理(如BERT和GPT),而ViT展示了其在视觉任务…...
解决vue2中更新列表数据,页面dom没有重新渲染的问题
在 Vue 2 中,直接修改数组的某个项可能不会触发视图的更新。这是因为 Vue 不能检测到数组的索引变化或对象属性的直接赋值。为了确保 Vue 能够正确地响应数据变化,你可以使用以下几种方法: 1. 使用 Vue.set() 使用 Vue.set() 方法可以确保 …...
vscode通过ssh连接远程服务器(实习心得)
一、连接ssh服务器 1.打开Visual Studio Code,进入拓展市场(CtrlShiftX),下载拓展Remote - SSH 2. 点击远程资源管理器选项卡,并选择远程(隧道/SSH)类别 3. 点击ssh配置:输入你的账号主机ip地址 4.在弹出的选择配置文件中…...
知识图谱9:知识图谱的展示
1、知识图谱的展示有很多工具 Neo4j Browser - - - - 浏览器版本 Neo4j Desktop - - - - 桌面版本 graphX - - - - 可以集成到Neo4j Desktop Neo4j 提供的 Neo4j Bloom 是用户友好的可视化工具,适合非技术用户直观地浏览图数据。Cypher 是其核心查询语言&#x…...
leetcode 面试经典 150 题:验证回文串
链接验证回文串题序号125类型字符串解题方法双指针法难度简单 题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s…...
【0363】Postgres内核 从 XLogReaderState readBuf 解析 XLOG Record( 8 )
上一篇: 【0362】Postgres内核 XLogReaderState readBuf 有完整 XLOG page header 信息 ? ( 7 ) 直接相关: 【0341】Postgres内核 读取单个 xlog page (2 - 2 ) 文章目录 1. readBuf 获取 page header 大小1.1 XLOG record 跨 page ?1.2 获取 XLOG Record 的 长度(xl…...
docker tdengine windows快速体验
#拉取镜像 docker pull tdengine/tdengine:2.6.0.34#容器运行 docker run -d --name td2.6 --restartalways -p 6030:6030 -p 6041:6041 -p 6043:6043 -p 6044-6049:6044-6049 -p 6044-6045:6044-6045/udp -p 6060:6060 tdengine/tdengine:2.6.0.34#容器数据持久化到本地 #/va…...
详解RabbitMQ在Ubuntu上的安装
目录 Ubuntu 环境安装 安装Erlang 查看Erlang版本 退出命令 编辑安装RabbitMQ 确认安装结果 安装RabbitMQ管理界面 启动服务 查看服务状态 通过IP:port访问 添加管理员用户 给用户添加权限 再次访问 Ubuntu 环境安装 安装Erlang RabbitMq需要…...
Python的3D可视化库【vedo】2-2 (plotter模块) 访问绘制器信息、操作渲染器
文章目录 4 Plotter类的方法4.1 访问Plotter信息4.1.1 实例信息4.1.2 演员对象列表 4.2 渲染器操作4.2.1 选择渲染器4.2.2 更新渲染场景 4.3 控制渲染效果4.3.1 渲染窗格的背景色4.3.2 深度剥离效果4.3.3 隐藏线框的线条4.3.4 改为平行投影模式4.3.5 添加阴影4.3.6 环境光遮蔽4…...
【vue2】文本自动省略组件,支持单行和多行省略,超出显示tooltip
代码见文末 vue3实现 最开始就用的vue3实现,如下 Vue3实现方式 vue2开发和使用文档 组件功能 TooltipText 是一个文字展示组件,具有以下功能: 文本显示:支持单行和多行文本显示。自动判断溢出:判断文本是否溢出…...
网络安全产品之认识防病毒软件
随着计算机技术的不断发展,防病毒软件已成为企业和个人计算机系统中不可或缺的一部分。防病毒软件是网络安全产品中的一种,主要用于检测、清除计算机病毒,以及预防病毒的传播。本文我们一起来认识一下防病毒软件。 一、什么是计算机病毒 计算…...
游戏引擎学习第42天
仓库: https://gitee.com/mrxiao_com/2d_game 简介 目前我们正在研究的内容是如何构建一个基本的游戏引擎。我们将深入了解游戏开发的每一个环节,从最基础的技术实现到高级的游戏编程。 角色移动代码 我们主要讨论的是角色的移动代码。我一直希望能够使用一些基…...
区块链智能合约( solidity) 安全编程
引言:本文由天玄链开源开发者提供,欢迎报名公益天玄链训练营 https://blockchain.163.com/trainingCamp 一、重入和竞态 重入和竞态在solidity 编程安全中会多次提及,历史上也造成了重大的损失。 1.1 问题分析 竞态的描述不严格…...
GUNS搭建
一、准备工作 源码下载: 链接: https://pan.baidu.com/s/1bJZzAzGJRt-NxtIQ82KlBw 提取码: criq 官方文档 二、导入代码 1、导入后端IDE 导入完成需要,需要修改yml文件中的数据库配置,改成自己的。 2、导入前端IDE 我是用npm安装的yarn npm…...
【ETCD】【源码阅读】stepWithWaitOption方法解析
在分布式系统中,ETCD 作为一个强一致性、高可用的 key-value 存储系统,广泛应用于服务发现、配置管理等场景。ETCD 在内部采用了 Raft 协议来保证集群的一致性,而日志预提案(log proposal)是 Raft 协议中至关重要的一部…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
