当前位置: 首页 > news >正文

【昇腾】NPU ID:物理ID、逻辑ID、芯片映射关系

起因:
https://www.hiascend.com/document/detail/zh/Atlas%20200I%20A2/23.0.0/re/npu/npusmi_013.html
npu-smi info -l查询所有NPU设备:

[naie@notebook-npu-bd130045-55bbffd786-lr6t8 DCNN]$ npu-smi info -lTotal Count                    : 1NPU ID                         : 6Chip Count                     : 1

运行脚本:

import torch_npu
from torch_npu.contrib import transfer_to_npu
import torchimport torch
import torch.nn as nnclass SingleConv(nn.Module):def __init__(self, in_ch, out_ch, kernel_size, stride, padding):super(SingleConv, self).__init__()self.single_conv = nn.Sequential(nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, padding=padding, stride=stride, bias=False),nn.BatchNorm2d(out_ch),nn.ReLU(inplace=True))def forward(self, x):return self.single_conv(x)class DenseFeaureAggregation(nn.Module):def __init__(self, in_ch, out_ch, base_ch):super(DenseFeaureAggregation, self).__init__()self.conv1 = nn.Sequential(nn.BatchNorm2d(num_features=1 * in_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch, base_ch, dilation=2, kernel_size=3, padding=2, stride=1, bias=True),)self.conv2 = nn.Sequential(nn.BatchNorm2d(num_features=in_ch + base_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch + base_ch, base_ch, dilation=3, kernel_size=3, padding=3, stride=1, bias=True),)self.conv3 = nn.Sequential(nn.BatchNorm2d(num_features=in_ch + 2 * base_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch + 2 * base_ch, base_ch, dilation=5, kernel_size=3, padding=5, stride=1, bias=True),)self.conv4 = nn.Sequential(nn.BatchNorm2d(num_features=in_ch + 3 * base_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch + 3 * base_ch, base_ch, dilation=7, kernel_size=3, padding=7, stride=1, bias=True),)self.conv5 = nn.Sequential(nn.BatchNorm2d(num_features=in_ch + 4 * base_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch + 4 * base_ch, base_ch, dilation=9, kernel_size=3, padding=9, stride=1, bias=True),)self.conv_out = nn.Sequential(nn.BatchNorm2d(num_features=in_ch + 5 * base_ch, eps=1e-5, affine=True),nn.ReLU(inplace=True),nn.Conv2d(in_ch + 5 * base_ch, out_ch, dilation=1, kernel_size=1, padding=0, stride=1, bias=True),)def forward(self, x):out_ = self.conv1(x)concat_ = torch.cat((out_, x), dim=1)out_ = self.conv2(concat_)concat_ = torch.cat((concat_, out_), dim=1)out_ = self.conv3(concat_)concat_ = torch.cat((concat_, out_), dim=1)out_ = self.conv4(concat_)concat_ = torch.cat((concat_, out_), dim=1)out_ = self.conv5(concat_)concat_ = torch.cat((concat_, out_), dim=1)out_ = self.conv_out(concat_)return out_class Encoder(nn.Module):def __init__(self, in_ch, list_ch):super(Encoder, self).__init__()self.encoder_1 = nn.Sequential(SingleConv(in_ch, list_ch[1], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[1], list_ch[1], kernel_size=3, stride=1, padding=1))self.encoder_2 = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2, padding=0),SingleConv(list_ch[1], list_ch[2], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[2], list_ch[2], kernel_size=3, stride=1, padding=1))self.encoder_3 = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2, padding=0),SingleConv(list_ch[2], list_ch[3], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[3], list_ch[3], kernel_size=3, stride=1, padding=1))self.encoder_4 = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2, padding=0),SingleConv(list_ch[3], list_ch[4], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[4], list_ch[4], kernel_size=3, stride=1, padding=1))self.DFA = DenseFeaureAggregation(list_ch[4], list_ch[4], list_ch[4])def forward(self, x):out_encoder_1 = self.encoder_1(x)out_encoder_2 = self.encoder_2(out_encoder_1)out_encoder_3 = self.encoder_3(out_encoder_2)out_encoder_4 = self.encoder_4(out_encoder_3)out_encoder_4 = self.DFA(out_encoder_4)return [out_encoder_1, out_encoder_2, out_encoder_3, out_encoder_4]class Decoder(nn.Module):def __init__(self, out_ch, list_ch):super(Decoder, self).__init__()self.upconv_3_1 = nn.ConvTranspose2d(list_ch[4], list_ch[3], kernel_size=2, stride=2, bias=True)self.decoder_conv_3_1 = nn.Sequential(SingleConv(2 * list_ch[3], list_ch[3], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[3], list_ch[3], kernel_size=3, stride=1, padding=1))self.upconv_2_1 = nn.ConvTranspose2d(list_ch[3], list_ch[2], kernel_size=2, stride=2, bias=True)self.decoder_conv_2_1 = nn.Sequential(SingleConv(2 * list_ch[2], list_ch[2], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[2], list_ch[2], kernel_size=3, stride=1, padding=1))self.upconv_1_1 = nn.ConvTranspose2d(list_ch[2], list_ch[1], kernel_size=2, stride=2, bias=True)self.decoder_conv_1_1 = nn.Sequential(SingleConv(2 * list_ch[1], list_ch[1], kernel_size=3, stride=1, padding=1),SingleConv(list_ch[1], list_ch[1], kernel_size=3, stride=1, padding=1))self.conv_out = nn.Sequential(nn.Conv2d(list_ch[1], out_ch, kernel_size=1, padding=0, bias=True))def forward(self, out_encoder):out_encoder_1, out_encoder_2, out_encoder_3, out_encoder_4 = out_encoderout_decoder_3_1 = self.decoder_conv_3_1(torch.cat((self.upconv_3_1(out_encoder_4), out_encoder_3), dim=1))out_decoder_2_1 = self.decoder_conv_2_1(torch.cat((self.upconv_2_1(out_decoder_3_1), out_encoder_2), dim=1))out_decoder_1_1 = self.decoder_conv_1_1(torch.cat((self.upconv_1_1(out_decoder_2_1), out_encoder_1), dim=1))output = self.conv_out(out_decoder_1_1)return [output]class Model(nn.Module):def __init__(self, in_ch, out_ch, list_ch):super(Model, self).__init__()self.encoder = Encoder(in_ch, list_ch)self.decoder = Decoder(out_ch, list_ch)# initself.initialize()@staticmethoddef init_conv_deconv_BN(modules):for m in modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0.)elif isinstance(m, nn.ConvTranspose2d):nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0.)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1.)nn.init.constant_(m.bias, 0.)def initialize(self):print('# random init encoder weight using nn.init.kaiming_uniform !')self.init_conv_deconv_BN(self.decoder.modules)print('# random init decoder weight using nn.init.kaiming_uniform !')self.init_conv_deconv_BN(self.encoder.modules)def forward(self, x):out_encoder = self.encoder(x)out_decoder = self.decoder(out_encoder)  # is a listreturn out_decoderimport re
import subprocessdef get_npu_id():try:# 执行命令并捕获输出output = subprocess.check_output(['npu-smi', 'info', '-l'], text=True)# 使用正则表达式查找NPU IDmatch = re.search(r'NPU ID\s+:\s+(\d+)', output)if match:return match.group(1)  # 返回匹配的第一个组,即NPU IDelse:return "NPU ID not found"except subprocess.CalledProcessError as e:return f"An error occurred: {e}"network = Model(in_ch=4, out_ch=1,list_ch=[-1, 32, 64, 128, 256])npu_id = get_npu_id()
# list_GPU_ids = [npu_id]
device = torch.device('cuda:' + str(npu_id))
network.to(device)
print("device:",npu_id)

报错:

Traceback (most recent call last):File "/home/work/user-job-dir/app/notebook/RTDosePrediction-main/RTDosePrediction/Src/DCNN/test_device_id.py", line 211, in <module>network.to(device)File "/home/naie/.local/lib/python3.9/site-packages/torch_npu/contrib/transfer_to_npu.py", line 56, in decoratedreturn fn(*args, **kwargs)File "/home/naie/.local/lib/python3.9/site-packages/torch_npu/utils/module.py", line 68, in toreturn self._apply(convert)File "/home/naie/.local/lib/python3.9/site-packages/torch/nn/modules/module.py", line 810, in _applymodule._apply(fn)File "/home/naie/.local/lib/python3.9/site-packages/torch/nn/modules/module.py", line 810, in _applymodule._apply(fn)File "/home/naie/.local/lib/python3.9/site-packages/torch/nn/modules/module.py", line 810, in _applymodule._apply(fn)[Previous line repeated 2 more times]File "/home/naie/.local/lib/python3.9/site-packages/torch/nn/modules/module.py", line 833, in _applyparam_applied = fn(param)File "/home/naie/.local/lib/python3.9/site-packages/torch_npu/utils/module.py", line 66, in convertreturn t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)File "/home/naie/.local/lib/python3.9/site-packages/torch_npu/contrib/transfer_to_npu.py", line 56, in decoratedreturn fn(*args, **kwargs)
RuntimeError: exchangeDevice:torch_npu/csrc/aten/common/CopyKernel.cpp:37 NPU error, error code is 107001
[ERROR] 2024-12-13-10:47:03 (PID:38196, Device:0, RankID:-1) ERR00100 PTA call acl api failed
[Error]: Invalid device ID.Check whether the device ID is valid.
EE1001: 2024-12-13-10:47:03.815.272 The argument is invalid.Reason: Set device failed, invalid device, set device=6, valid device range is [0, 1)Solution: 1.Check the input parameter range of the function. 2.Check the function invocation relationship.TraceBack (most recent call last):rtSetDevice execute failed, reason=[device id error][FUNC:FuncErrorReason][FILE:error_message_manage.cc][LINE:53]open device 6 failed, runtime result = 107001.[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161]

猜想也许是进行了从物理ID到逻辑ID的映射。
查了一下华为的官方文档:
https://www.hiascend.com/document/detail/zh/Atlas%20200I%20A2/23.0.0/re/npu/npusmi_013.html
还真的存在这么一个映射。
在这里插入图片描述

遂用这个命令查看了当前环境下的芯片映射关系:

[naie@notebook-npu-bd130045-55bbffd786-lr6t8 DCNN]$ npu-smi info -mNPU ID                         Chip ID                        Chip Logic ID                  Chip Name                     6                              0                              0                              Ascend 910B36                              1                              -                              Mcu 

确实物理ID为6的NPU被映射成了0。这是因为当前环境下(notebook)中只存在一个NPU。

但是还有一个问题:什么时候使用物理ID什么时候使用逻辑ID呢?

物理ID

npu-smi info -t power -i id类似于这种命令里使用的id都是物理ID:
在这里插入图片描述
因为npu-smi info -l查出来的是物理ID。

逻辑ID

device = torch.device('cuda:' + str(npu_id))这种就用的是逻辑ID

相关文章:

【昇腾】NPU ID:物理ID、逻辑ID、芯片映射关系

起因&#xff1a; https://www.hiascend.com/document/detail/zh/Atlas%20200I%20A2/23.0.0/re/npu/npusmi_013.html npu-smi info -l查询所有NPU设备&#xff1a; [naienotebook-npu-bd130045-55bbffd786-lr6t8 DCNN]$ npu-smi info -lTotal Count : 1NPU…...

Three.js曲线篇 8.管道漫游

目录 创建样条曲线 创建管道 透视相机漫游 完整代码 大家不要被这个“管道漫游”这几个字所蒙骗了&#xff0c;学完后大家就知道这个知识点有多脏了。我也是误入歧途&#xff0c;好奇了一下“管道漫游”。好了&#xff0c;现在就给大家展示一下为啥这个只是点脏了。 我也废话…...

scala基础_数据类型概览

Scala 数据类型 下表列出了 Scala 支持的数据类型&#xff1a; 类型类别数据类型描述Scala标准库中的实际类基本类型Byte8位有符号整数&#xff0c;数值范围为 -128 到 127scala.Byte基本类型Short16位有符号整数&#xff0c;数值范围为 -32768 到 32767scala.Short基本类型I…...

【LeetCode刷题之路】622.设计循环队列

LeetCode刷题记录 &#x1f310; 我的博客主页&#xff1a;iiiiiankor&#x1f3af; 如果你觉得我的内容对你有帮助&#xff0c;不妨点个赞&#x1f44d;、留个评论✍&#xff0c;或者收藏⭐&#xff0c;让我们一起进步&#xff01;&#x1f4dd; 专栏系列&#xff1a;LeetCode…...

暂停一下,给Next.js项目配置一下ESLint(Next+tailwind项目)

前提 之前开自己的GitHub项目&#xff0c;想着不是团队项目&#xff0c;偷懒没有配置eslint&#xff0c;后面发现还是不行。eslint的存在可以帮助我们规范代码格式&#xff0c;同时 ctrl s保存立即调整代码格式是真的很爽。 除此之外&#xff0c;团队使用eslint也是好处颇多…...

Windows系统磁盘与分区之详解(Detailed Explanation of Windows System Disks and Partitions)

Windows系统磁盘与分区知识详解 在日常使用Windows操作系统的过程中,我们常常会接触到磁盘管理,磁盘分区等操作.然而,许多人可能并不完全理解磁盘和分区的运作原理以及如何高效管理它们. 本篇文章将探讨Windows系统中关于磁盘和分区的各种知识,帮助大家更好地理解磁盘以及分区…...

顺序表的使用,对数据的增删改查

主函数&#xff1a; 3.c #include "3.h"//头文件调用 SqlListptr sql_cerate()//创建顺序表函数 {SqlListptr ptr(SqlListptr)malloc(sizeof(SqlList));//在堆区申请连续的空间if(NULLptr){printf("创建失败\n");return NULL;//如果没有申请成功&#xff…...

XDMA与FPGA:高效数据传输的艺术

XDMA与FPGA&#xff1a;高效数据传输的艺术 引言 在现代计算系统中&#xff0c;数据传输的效率直接影响系统的整体性能。特别是在涉及到高速数据处理的领域&#xff0c;如高性能计算&#xff08;HPC&#xff09;、实时视频处理和大数据分析等&#xff0c;如何高效地在主机与F…...

#思科模拟器通过服务配置保障无线网络安全Radius

演示拓扑图&#xff1a; 搭建拓扑时要注意&#xff1a; 只能连接它的Ethernet接口&#xff0c;不然会不通 MAC地址绑定 要求 &#xff1a;通过配置MAC地址过滤禁止非内部员工连接WiFi 打开无线路由器GUI界面&#xff0c;点开下图页面&#xff0c;配置路由器无线网络MAC地址过…...

浅谈Python库之pillow

一、pillow的介绍 Pillow是Python Imaging Library (PIL) 的一个分支&#xff0c;它是一个强大的图像处理库&#xff0c;用于打开、操作和保存许多不同图像文件格式。Pillow提供了广泛的文件格式支持、强大的图像处理能力和广泛的文件格式兼容性。它是PIL的一个友好的分支&…...

Android通过okhttp下载文件(本文案例 下载mp4到本地,并更新到相册)

使用步骤分为两步 第一步导入 okhttp3 依赖 第二步调用本文提供的 utils 第一步这里不做说明了&#xff0c;直接提供第二步复制即用 DownloadUtil 中 download 为下载文件 参数说明 这里主要看你把 destFileName 下载文件名称定义为什么后缀&#xff0c;比如我定义为 .mp4 下…...

计算机网络从诞生之初到至今的发展历程

前言 "上网"&#xff0c;相信大家对这个动词已经不再陌生&#xff0c;网 通常指的是网络&#xff1b;在 2024 年的今天&#xff0c;网络已经渗透到了每个人的生活中&#xff0c;成为其不可或缺的一部分&#xff1b;你此时此刻在看到我的博客&#xff0c;就是通过网络…...

Kudu 源码编译-aarch架构 1.17.1版本

跟着官方文档编译 第一个问题&#xff1a;在make阶段时会报的问题&#xff1a; kudu/src/kudu/util/block_bloom_filter.cc:210:3: error: ‘vst1q_u32_x2’ was not declared in this scope kudu/src/kudu/util/block_bloom_filter.cc:436:5: error: ‘vst1q_u8_x2’ was no…...

SEC_ASA 第二天作业

拓扑 按照拓扑图配置 NTP&#xff0c;Server端为 Outside路由器&#xff0c;Client端为 ASA&#xff0c;两个设备的 NTP传输使用MD5做校验。&#xff08;安全 V4 LAB考点&#xff09; 提示&#xff1a;Outside路由器作为 Server端要配置好正确的时间和时区&#xff0c;ASA防…...

操作系统(5)进程

一、定义与特点 定义&#xff1a;进程是计算机中的程序关于某数据集合上的一次运行活动&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;是操作系统结构的基础。 特点&#xff1a; 动态性&#xff1a;进程是动态创建的&#xff0c;有它自身的生命周期&#xff0c;…...

6_Sass 选择器函数 --[CSS预处理]

Sass 提供了一系列的选择器函数&#xff0c;用于操作和组合CSS选择器。这些函数可以帮助你更灵活地创建样式规则&#xff0c;并且可以减少重复代码。以下是几个常用的选择器函数及其用法&#xff1a; 1. selector-append($selector1, $selector2...) selector-append($select…...

考研数学【线性代数基础box(数二)】

本文是对数学二线性代数基础进行总结&#xff0c;一些及极其简单的被省略了&#xff0c;代数的概念稀碎&#xff0c;不如高数关联性高&#xff0c;所以本文仅供参考&#xff0c;做题请从中筛选&#xff01; 本文为初稿&#xff0c;后面会根据刷题和自己的理解继续更新 第一章…...

ModbusTcp获取数据

ModbusTcp获取数据 记录一个用 pymodbus 库来获取数据的代码。 注意&#xff1a; 1.读取寄存器地址是16进制的。2.大小端转换通过代码知道原理。读取数据时&#xff0c;切记频率别太高&#xff0c;否则会出现连接被关闭问题。 from pymodbus.client.sync import ModbusTcpCli…...

java 知识点:注解及使用

注解 大多数时候&#xff0c;我们会使用注解&#xff0c;而不是自定义注解。注解给谁用&#xff1f;编译器 、给解析程序用注解不是程序的一部分&#xff0c;可以理解为注解就是一个标签 主要的作用有以下四方面&#xff1a; 生成文档&#xff0c;通过代码里标识的元数据生成…...

AI预测体彩排3采取888=3策略+和值012路+胆码+通杀1码测试12月13日升级新模型预测第156弹

经过100多期的测试&#xff0c;当然有很多彩友也一直在观察我每天发的预测结果&#xff0c;得到了一个非常有价值的信息&#xff0c;那就是9码定位的命中率非常高&#xff0c;已到达90%的命中率&#xff0c;这给喜欢打私菜的朋友提供了极高价值的预测结果~当然了&#xff0c;大…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...