当前位置: 首页 > news >正文

使用ERA5数据绘制风向玫瑰图的简易流程

使用ERA5数据绘制风向玫瑰图的简易流程

今天需要做一个2017年-2023年的平均风向的统计,做一个风向玫瑰图,想到的还是高分辨率的ERA5land的数据(0.1°分辨率,逐小时分辨率,1950年至今)。

风向,我分为了16个(0-360°,北方向为0),统计该时间段内的16个风向频率。

下载

使用Google earth engine快速统计风向频率:

var ROI = 你的区域;
var startDate = '2023-1-01';
var endDate = '2023-01-30';var dataset = ee.ImageCollection('ECMWF/ERA5_LAND/HOURLY').select(['u_component_of_wind_10m', 'v_component_of_wind_10m']).filterDate(startDate, endDate).filter(ee.Filter.calendarRange(11, 4, 'month'));var calculateWindDirection = function(image) {var direction = image.select('u_component_of_wind_10m', 'v_component_of_wind_10m').expression('atan2(v, u) * 180 / PI + 180',{'u': image.select('u_component_of_wind_10m'),'v': image.select('v_component_of_wind_10m'),'PI': Math.PI});return direction.rename('wind_direction');
};// 计算16个方向的频率
var directions = ee.List.sequence(0, 15);
var binSize = 360/16;var directionalFrequency = directions.map(function(dir) {var start = ee.Number(dir).multiply(binSize);var end = start.add(binSize);var directionMask = dataset.map(calculateWindDirection).map(function(img) {return img.gte(start).and(img.lt(end));});    return directionMask.mean().rename(ee.String('dir_').cat(ee.Number(dir).format('%02d')));
});// 将List转换为Image Collection,然后合并为一个多波段图像
var allDirections = ee.ImageCollection.fromImages(directionalFrequency).toBands();// 修改波段名称
var newBandNames = directions.map(function(dir) {return ee.String('dir_').cat(ee.Number(dir).format('%02d'));
}).getInfo();// 重命名波段
allDirections = allDirections.rename(newBandNames);// 导出数据
Export.image.toDrive({image: allDirections,description: 'Wind_Direction_Frequency_16dirs',scale: 10000,region: ROI,fileFormat: 'GeoTIFF',maxPixels: 1e9
});

下载下来后,放到qgis里面看看,一共16个波段,每个波段都代表着一个方向上的频率,16个波段加起来是1:

制图

使用python3实现:

import numpy as np
import matplotlib.pyplot as pltdef plot_wind_rose(data, title='Wind Rose'):"""绘制风向玫瑰图data: 包含16个方向频率的数组"""# 创建图形fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={'projection': 'polar'})# 设置方向角度(16个方向,每个22.5度)angles = np.arange(0, 360, 22.5) * np.pi/180# 确保数据是闭合的(首尾相连)frequencies = np.append(data, data[0])angles = np.append(angles, angles[0])# 绘制极坐标图ax.plot(angles, frequencies, 'o-', linewidth=2, color='purple')ax.fill(angles, frequencies, alpha=0.25, color='purple')# 设置方向标签ax.set_xticks(angles[:-1])direction_labels = ['N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE','S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW']ax.set_xticklabels(direction_labels)# 设置网格和刻度ax.grid(True)# 设置频率刻度范围max_freq = np.max(frequencies)ax.set_ylim(0, max_freq * 1.1)# 设置标题ax.set_title(title)return figdef read_wind_data(tiff_path, x, y):"""读取特定位置的风向数据"""with rasterio.open(tiff_path) as src:# 将经纬度转换为像素坐标row, col = src.index(x, y)# 读取所有波段在该位置的值data = []for i in range(1, src.count + 1):value = src.read(i)[row, col]data.append(float(value))return np.array(data)# 使用示例
import rasterio
#输入tif路径
tiff_path = r'\风向数据\Wind_Direction_Frequency_16dirs.tif'
#输入经纬度
x, y = 99, 25.312# 读取数据
wind_data = read_wind_data(tiff_path, x, y)# 打印数据检查
print("Wind direction frequencies:")
for i, freq in enumerate(wind_data):print(f"Direction {i*22.5:>6.1f}°: {freq:>6.3f}")# 绘制风向玫瑰图
fig = plot_wind_rose(wind_data, f'Wind Rose at ({x}, {y})')# 保存图片
plt.savefig('wind_rose.png', dpi=300, bbox_inches='tight')
plt.show()

在代码中填入需要生成的风玫瑰图的经纬度,即可获得2017-2023年的该地区风向情况。

参考

Claude sonnet 3.5

相关文章:

使用ERA5数据绘制风向玫瑰图的简易流程

使用ERA5数据绘制风向玫瑰图的简易流程 今天需要做一个2017年-2023年的平均风向的统计,做一个风向玫瑰图,想到的还是高分辨率的ERA5land的数据(0.1分辨率,逐小时分辨率,1950年至今)。 风向,我分为了16个&…...

测试脚本并发多进程:pytest-xdist用法

参考:https://www.cnblogs.com/poloyy/p/12694861.html pytest-xdist详解: https://www.cnblogs.com/poloyy/p/14708825.html 总 https://www.cnblogs.com/poloyy/category/1690628.html...

数据可视化的Python实现

一、GDELT介绍 GDELT ( www.gdeltproject.org ) 每时每刻监控着每个国家的几乎每个角落的 100 多种语言的新闻媒体 -- 印刷的、广播的和web 形式的,识别人员、位置、组织、数量、主题、数据源、情绪、报价、图片和每秒都在推动全球社会的事件,GDELT 为全…...

【Linux系列】Linux 系统配置文件详解:`/etc/profile`、`~/.bashrc` 和 `~/.bash_profile`

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

uni-app实现小程序、H5图片轮播预览、双指缩放、双击放大、单击还原、滑动切换功能

前言 这次的标题有点长,主要是想要表述的功能点有点多; 简单做一下需求描述 产品要求在商品详情页的头部轮播图部分,可以单击预览大图,同时在预览界面可以双指放大缩小图片并且可以移动查看图片,双击放大&#xff0…...

游戏引擎学习第45天

仓库: https://gitee.com/mrxiao_com/2d_game 回顾 我们刚刚开始研究运动方程,展示了如何处理当人物遇到障碍物时的情况。有一种版本是角色会从障碍物上反弹,而另一版本是角色会完全停下来。这种方式感觉不太自然,因为在游戏中,…...

electron常用方法

一,,electron设置去除顶部导航栏和menu 1,electron项目 在创建BrowserWindow实例的main.js页面添加frame:false属性 2,electron-vue项目 在src/main/index.js文件下找到创建窗口的方法(createWindow)&…...

【Spark】Spark Join类型及Join实现方式

如果觉得这篇文章对您有帮助,别忘了点赞、分享或关注哦!您的一点小小支持,不仅能帮助更多人找到有价值的内容,还能鼓励我持续分享更多精彩的技术文章。感谢您的支持,让我们一起在技术的世界中不断进步! Sp…...

meta llama 大模型一个基础语言模型的集合

LLaMA 是一个基础语言模型的集合,参数范围从 7B 到 65B。我们在数万亿个 Token 上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B 在大多数基准测试…...

JAVA爬虫获取1688关键词接口

以下是使用Java爬虫获取1688关键词接口的详细步骤和示例代码: 一、获取API接口访问权限 要使用1688关键词接口,首先需要获取API的使用权限,并了解接口规范。以下是获取API接口的详细步骤: 注册账号:在1688平台注册一…...

操作系统——内存管理

1、什么是虚拟内存?它是如何实现的?虚拟内存与物理内存之间有什么关系? 虚拟内存是操作系统提供的一种内存管理机制,它使程序认为自己拥有连续的内存空间,但实际上内存可能被分散存储在物理内存和磁盘交换空间中。 虚…...

android studio 模拟器不能联网?

模拟器路径: C:\Users\Administrator\AppData\Local\Android\Sdk\emulator\emulator.exe.关闭所有AVD设备实例 导航至: C:\Users\userName\AppData\Local\Android\Sdk\emulator查看模拟器名称 AdministratorDESKTOP-6JB1OGC MINGW64 ~/AppData/Local/…...

CTF-WEB: 目录穿越与模板注入 [第一届国城杯 Ez_Gallery ] 赛后学习笔记

step1 验证码处存在逻辑漏洞,只要不申请刷新验证码就一直有效 字典爆破得到 admin:123456 step2 /info?file../../../proc/self/cmdline获得 python/app/app.py经尝试,读取存在的目录时会返回 A server error occurred. Please contact the administrator./info?file.…...

数据结构6.4——归并排序

基本思想: 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个…...

【html 常用MIME类型列表】

本表仅列出了常用的MIME类型,完整列表参考文档。 浏览器通常使用 MIME 类型(而不是文件扩展名)来确定如何处理 URL,因此 Web 服务器在响应头中添加正确的 MIME 类型非常重要。 如果配置不正确,浏览器可能会曲解文件内容…...

Linux之vim编辑器

vi编辑器是所有Unix及linux系统下标准的编辑器,类似于Windows系统下的记事本。很多软件默认使用vi作为他们编辑的接口。vim是进阶版的vi,vim可以视为一种程序编辑器。 前言: 1.文件准备 复制 /etc/passwd文件到自己的目录下(不…...

【工具介绍】可以批量查看LableMe标注的图像文件信息~

在图像处理和计算机视觉领域,LabelMe是一个广泛使用的图像标注工具,它帮助我们对图像中的物体进行精确的标注。但是,当标注完成后,我们常常需要一个工具来批量查看这些标注信息。 今天,我要介绍的这款exe程序&#xf…...

2024年山西省第十八届职业院校技能大赛 (高职组)“信息安全管理与评估”赛项规程

2024年山西省第十八届职业院校技能大赛 (高职组)“信息安全管理与评估”赛项规程 一、赛项名称 赛项名称:信息安全管理与评估 英文名称:Information Security Management and Evaluation 赛项组别:高职教师组 赛项归属…...

STM32完全学习——STemWin的移植小插曲

一、移植编译的一些问题 新版的STemWin的库没有区别编译器,只有一些这样的文件,默认你将这些文件导入到KEIL中,然后编译就会有下面的错误。 ..\MEWIN\STemWin\Lib\STemWin_CM4_wc16.a(1): error: A1167E: Invalid line start ..\MEWIN\STe…...

Java——IO流(下)

一 (字符流扩展) 1 字符输出流 (更方便的输出字符——>取代了缓冲字符输出流——>因为他自己的节点流) (PrintWriter——>节点流——>具有自动行刷新缓冲字符输出流——>可以按行写出字符串,并且可通过println();方法实现自动换行) 在Java的IO流中…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...