基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理
基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理
flyfish
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_数据处理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练过程
输入两张图像
输出
可视化
Image 1:
E m m ˉ = 2 7 Q c π 1 / 2 Γ ( 1 / 4 ) 2 log ( L 0 / L ) L ∫ 1 ∞ d y y 2 y 4 − 1 . E _ { m \bar { m } } = \frac { 2 ^ { 7 } \sqrt { Q _ { c } } \pi ^ { 1 / 2 } } { \Gamma ( 1 / 4 ) ^ { 2 } } \frac { \log \left( L _ { 0 } / L \right) } { L } \int _ { 1 } ^ { \infty } d y \frac { y ^ { 2 } } { \sqrt { y ^ { 4 } - 1 } } . Emmˉ=Γ(1/4)227Qcπ1/2Llog(L0/L)∫1∞dyy4−1y2.
Image 2:
u ( τ ) ‾ = u ( − τ ˉ ) , u ( τ + 1 ) = − u ( τ ) , \overline { { u ( \tau ) } } = u ( - \bar { \tau } ) , \qquad \qquad u ( \tau + 1 ) = - u ( \tau ) , u(τ)=u(−τˉ),u(τ+1)=−u(τ),
import argparse
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from peft import PeftModel, LoraConfig, TaskType
import torchclass LaTeXOCR:def __init__(self, local_model_path, lora_model_path):self.local_model_path = local_model_pathself.lora_model_path = lora_model_pathself._load_model_and_processor()def _load_model_and_processor(self):config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],inference_mode=True,r=64,lora_alpha=16,lora_dropout=0.05,bias="none",)self.model = Qwen2VLForConditionalGeneration.from_pretrained(self.local_model_path, torch_dtype=torch.float16, device_map="auto")self.model = PeftModel.from_pretrained(self.model, self.lora_model_path, config=config)self.processor = AutoProcessor.from_pretrained(self.local_model_path)def generate_latex_from_images(self, test_image_paths, prompt):"""根据给定的测试图像路径列表和提示信息,生成对应的LaTeX格式文本。参数:test_image_paths (list of str): 包含数学公式的测试图像路径列表。prompt (str): 提供给模型的提示信息。返回:list of str: 转换后的LaTeX格式文本列表。"""results = []for image_path in test_image_paths:messages = [{"role": "user","content": [{"type": "image","image": image_path,"resized_height": 100,"resized_width": 500,},{"type": "text", "text": prompt},],}]text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)image_inputs, video_inputs = process_vision_info(messages)inputs = self.processor(text=[text],images=image_inputs,videos=video_inputs,padding=True,return_tensors="pt",)inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")with torch.no_grad():generated_ids = self.model.generate(**inputs, max_new_tokens=8192)generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]output_text = self.processor.batch_decode(generated_ids_trimmed,skip_special_tokens=True,clean_up_tokenization_spaces=False,)results.append(output_text[0])return resultsdef parse_arguments():parser = argparse.ArgumentParser(description="LaTeX OCR using Qwen2-VL")parser.add_argument("--local_model_path",type=str,default="./Qwen/Qwen2-VL-7B-Instruct",help='Path to the local model.',)parser.add_argument("--lora_model_path",type=str,default="./output/Qwen2-VL-7B-LatexOCR/checkpoint-1500",help='Path to the LoRA model checkpoint.',)parser.add_argument("--test_image_paths",nargs='+', # 接受多个参数type=str,default=["./LaTeX_OCR/987.jpg", "./LaTeX_OCR/986.jpg"], # 设置默认值为两个图像路径help='Paths to the test images.',)return parser.parse_args()if __name__ == "__main__":args = parse_arguments()prompt = ("尊敬的Qwen2VL大模型,我需要你帮助我将一张包含数学公式的图片转换成LaTeX格式的文本。\n""请按照以下说明进行操作:\n""1. **图像中的内容**: 图像中包含的是一个或多个数学公式,请确保准确地识别并转换为LaTeX代码。\n""2. **公式识别**: 请专注于识别和转换数学符号、希腊字母、积分、求和、分数、指数等数学元素。\n""3. **LaTeX语法**: 输出时使用标准的LaTeX语法。确保所有的命令都是正确的,并且可以被LaTeX编译器正确解析。\n""4. **结构保持**: 如果图像中的公式有特定的结构(例如多行公式、矩阵、方程组),请在输出的LaTeX代码中保留这些结构。\n""5. **上下文无关**: 不要尝试解释公式的含义或者添加额外的信息,只需严格按照图像内容转换。\n""6. **格式化**: 如果可能的话,使输出的LaTeX代码易于阅读,比如适当添加空格和换行。")latex_ocr = LaTeXOCR(args.local_model_path, args.lora_model_path)results = latex_ocr.generate_latex_from_images(args.test_image_paths, prompt)for i, result in enumerate(results):print(f"Image {i + 1}:")print(result)print("-" * 80)
相关文章:

基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理
基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理 flyfish 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理 基于Q…...

详解下c语言下的多维数组和指针数组
在实际c语言编程中,三维及以上数组我们使用的很少,二维数组我们使用得较多。说到数组,又不得关联到指针,因为他们两者的联系太紧密了。今天我们就详细介绍下c语言下的多维数组(主要是介绍二维数组)和指针。 一、二维数组 1.1&am…...

免费送源码:Java+ssm+MySQL 基于微服务架构的餐饮系统的设计与实现 计算机毕业设计原创定制
摘 要 近年来,我国经济和社会发展迅速,人们物质生活水平日渐提高,餐饮行业更是发展迅速,人们对于餐饮行业的认识和要求也越来越高。传统形式的餐饮行业都是以人为本,管理起来需要很多人力、物力、财力,既不方便管理者的管理,也不方便顾客实时了解餐厅动态,给传统餐饮行业的经…...
LeetCode hot100-69-N
https://leetcode.cn/problems/valid-parentheses/description/?envTypestudy-plan-v2&envIdtop-100-liked 20. 有效的括号 已解答 简单 相关标签 相关企业 提示 给定一个只包括 (,),{,},[,] 的字符串 s &#x…...

【橘子容器】如何构建一个docker镜像
你肯定打过docker镜像是吧,作为一个开发这很正常,那么你用的什么打包方式呢,这里我们来梳理几种常用的docker镜像构建方式。 ps:这里不是太讲原理,更多的是一种科普和操作。因为讲原理的东西网上已经够多了。 一、Dock…...

EFAK kafka可视化管理工具部署使用
简介:EFAK是开源的可视化和管理软件。它允许您查询、可视化、提醒和探索您的指标,无论它们存储在何处。简单来说,它为您提供了将 Kafka 集群数据转换为漂亮的图形和可视化效果的工具。 环境:①操作系统:CentOS7.6&…...
Spring Boot 工程分层实战(五个分层维度)
1、分层思想 计算机领域有一句话:计算机中任何问题都可通过增加一个虚拟层解决。这句体现了分层思想重要性,分层思想同样适用于Java工程架构。 分层优点是每层只专注本层工作,可以类比设计模式单一职责原则,或者经济学比较优势原…...

vscode IntelliSense Configurations
IntelliSense 是一个强大的代码补全和代码分析功能,它可以帮助开发者提高编程效率。图中显示的是 VSCode 的 IntelliSense 配置界面,具体配置如下: Compiler path(编译器路径): 这里指定了用于构建项目的编译器的完整路…...

hbase读写操作后hdfs内存占用太大的问题
hbase读写操作后hdfs内存占用太大的问题 查看内存信息hbase读写操作 查看内存信息 查看本地磁盘的内存信息 df -h查看hdfs上根目录下各个文件的内存大小 hdfs dfs -du -h /查看hdfs上/hbase目录下各个文件的内存大小 hdfs dfs -du -h /hbase查看hdfs上/hbase/oldWALs目录下…...

C++----入门篇
引言 C是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式等。熟悉C语言之后,对C学习有一定的帮助,本章节主要目标: 1. 补充C语言语法的不足,以及C是如何对C语言…...

C语言程序设计P5-5【应用函数进行程序设计 | 第五节】—知识要点:变量的作用域和生存期
知识要点:变量的作用域和生存期 视频: 目录 一、任务分析 二、必备知识与理论 三、任务实施 一、任务分析 有一个一维数组,内放 10 个学生成绩,写一个函数,求出平均分、最高分和最低分。 任务要求用一个函数来完…...
用 Sass 模块化系统取代全局导入,消除 1.80.0 引入的 @import 弃用警告
目录 前言 问题 import 的缺陷 命名冲突 重复导入 模块系统 use 规则 forward 规则 实际修改 前言 最初,Sass 使用 import 规则通过单个全局命名空间加载其他文件,所有内置函数也可全局使用。由于模块系统(use 和 forward 规则&…...

安卓低功耗蓝牙BLE官方开发例程(JAVA)翻译注释版
官方原文链接 https://developer.android.com/develop/connectivity/bluetooth/ble/ble-overview?hlzh-cn 目录 低功耗蓝牙 基础知识 关键术语和概念 角色和职责 查找 BLE 设备 连接到 GATT 服务器 设置绑定服务 设置 BluetoothAdapter 连接到设备 声明 GATT 回…...
搭建fastapi项目
环境准备 # 创建项目目录 mkdir my_fastapi_project cd my_fastapi_project# 创建和激活虚拟环境 python -m venv venv .\venv\Scripts\activate安装必要的包 pip install fastapi uvicorn python-dotenv创建项目基本结构 my_fastapi_project/ │ .env # …...

Maven学习(Maven项目模块化。模块间“继承“机制。父(工程),子项目(模块)间聚合)
目录 一、Maven项目模块化? (1)基本介绍。 (2)汽车模块化生产再聚合组装。 (3)Maven项目模块化图解。 1、maven_parent。 2、maven_pojo。 3、maven_dao。 4、maven_service。 5、maven_web。 6…...
华为云云原生中间件DCS DMS 通过中国信通院与全球IPv6测试中心双重能力检测
近日,中国信息通信研究院(以下简称“中国信通院”)与全球IPv6测试中心相继宣布,华为云的分布式缓存服务(Distributed Cache Service,简称DCS)和分布式消息服务(Distributed Message …...

PostgreSQL中事件触发器Event Trigger
在PostgreSQL中,事件触发器(Event Trigger)是一种特殊的触发器类型,它允许你在特定的数据库系统事件发生时执行特定的操作。与普通的触发器不同,事件触发器并不与特定的表或视图相关联,而是与数据库级别的全…...
uni.request流式(Stream)请求,实现打印机效果
最近使用扣子 - 开发指南 (coze.cn)和智谱AI开放平台开发小程序AI导诊和用药对话指南。 开发的过程中也是走了不少坑,下面就来聊聊走了哪些坑。 坑1 :coze试了v2和v3的接口,两个接口请求还是有点差别的,v2拿到了botId和accessToken可以直接请求不需要做任何处理,v3还需要…...
canvas保存图片
需求:上面有几个按钮,其中有一个切换是图片 用v-if会导致图片加载慢 实现方法: 一进来就加载,通过监听元素显示,用于控制canvas的宽高,从而达到隐藏的效果 组件dowolad.vue <template><view …...
DNS到底有什么用?
举个例子,对于我们来说访问的域名是www.baidu.com,但是实际在计算机并不认识这个域名,计算机是需要通过IP地址去访问这个网站,所以呢?这个时候就需要一个dns解析器,来把这串域名转换为IP地址给计算机去访问…...

什么是CRM系统?CRM系统的功能、操作流程、生命周期
CRM系统作为企业管理和维护客户关系的重要工具,在商业活动中扮演着越来越重要的角色。今天,就让我们一起揭开它的神秘面纱,看看这个“幕后英雄”到底是怎么工作的。 什么是CRM系统? 首先,我们要了解什么是CRM。简单来…...

美畅物联丨JS播放器录像功能:从技术到应用的全面解析
畅联云平台的JS播放器是一款功能十分强大的视频汇聚平台播放工具,它已经具备众多实用功能,像实时播放、历史录像回放、云台控制、倍速播放、录像记录、音频播放、画面放大、全屏展示、截图捕捉等等。这些功能构建起了一个高效、灵活且用户友好的播放环境…...

我们来学mysql -- 事务并发之不可重复读(原理篇)
事务并发之不可重复读 题记不可重复读系列文章 题记 在《事务之概念》提到事务对应现实世界的状态转换,这个过程要满足4个特性这世界,真理只在大炮射程之类,通往和平的道路,非“常人”可以驾驭一个人生活按部就班,人多…...

ABAQUS进行焊接仿真分析(含子程序)
0 前言 焊接技术作为现代制造业中的重要连接工艺,广泛应用于汽车、船舶、航空航天、能源等多个行业。焊接接头的质量和性能直接影响到结构件的安全性、可靠性和使用寿命。因此,在焊接过程中如何有效预测和优化焊接过程中的热效应、应力变化以及材料变形等问题,成为了焊接研…...
BAPI_GOODSMVT_CREATE物料凭证增强字段
目的:增加字段LSMNG LSMEH的赋值 项目MSEG 的 BAPI 表增强结构 BAPI_TE_XMSEG 抬头MKPF 的 BAIP 表增强 BAPI_TE_XMKPF 1. 在结构BAPI_TE_XMSEG中appending structure附加结构 ZMSEG_001,增加字段LSMNG, LSMEH In The method IF_EX_MB_H…...

tomcat的优化和动静分离
tomcat的优化 1.tomcat的配置优化 2.操作系统的内核优化 注意:设置保存后,需要重新ssh连接才会看到配置更改的变化 vim /etc/security/limits.conf # 65535 为Linux系统最大打开文件数 * soft nproc 65535 * hard nproc 65535 * soft nofile 65535 *…...
[ShaderLab] 【Unity】【图像编程】理解 Unity Shader 的结构
在计算机图形学领域,开发者经常面临着管理着色器复杂性的挑战。正如大卫惠勒(David Wheeler)所说:“计算机科学中的任何问题都可以通过增加一层抽象来解决。” Unity 提供了这样一层抽象,即 ShaderLab,它通过组织和定义渲染过程的各个步骤,简化了编写着色器的过程。 什…...
vue的前端架构 介绍各自的优缺点
Vue.js 是一个用于构建用户界面的渐进式框架,可以根据项目的复杂性和需求选择不同的前端架构。以下是几种常见的 Vue 前端架构及其优缺点: 1. 单页应用 (SPA) 单页应用(Single Page Application,简称 SPA)是一种现代…...
可信AI与零知识证明的概念
可信AI 可信AI是指人工智能的设计、开发和部署遵循一系列原则和方法,以确保其行为和决策是可靠、可解释、公平、安全且符合人类价值观和社会利益的.以下是关于可信AI的举例说明、实现方式及主流方案: 举例说明 医疗诊断领域:一个可信AI的医疗诊断系统,不仅能够准确地识别…...
JavaScript逆向时,常用的11个hook
提示:记录工作中遇到的需求及解决办法 文章目录 前言01、dom操作02、Cookie操作03、事件监听操作04、AJAX拦截操作05、函数替换操作06、Header操作07、URL操作08、JSON.stringify操作09、JSON.parse操作10、eval操作11、Function操作前言 在逆向分析JavaScript代码时,开发者…...