当前位置: 首页 > news >正文

回归预测 | Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测

目录

    • 效果一览
    • 基本介绍
    • 模型设计
    • 程序设计
    • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

基本介绍

回归预测 | Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测

模型设计

基于BiLSTM-Adaboost的回归预测模型结合了双向长短期记忆神经网络(BiLSTM)和Adaboost集成学习的优势,能够用于处理时间序列数据的回归预测问题。以下是对该模型的详细介绍:

一、模型组成
双向长短期记忆神经网络(BiLSTM)
BiLSTM是一种特殊的循环神经网络(RNN),它能够捕捉时间序列数据中的长期依赖关系。
与传统的LSTM相比,BiLSTM通过同时考虑从前向后和从后向前的时序信息,能够更全面地捕捉数据中的时序依赖性。
Adaboost集成学习
Adaboost是一种集成学习方法,通过迭代地训练弱分类器(在

相关文章:

回归预测 | Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测

目录 效果一览基本介绍模型设计程序设计参考资料效果一览 基本介绍 回归预测 | Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测 模型设计 基于BiLSTM-Adaboost的回归预测模型结合了双向长短期记忆神经网络(BiLSTM)和Adaboost集成学习的…...

微信小程序跳转其他小程序以及跳转网站

一、跳转其他小程序 1.1 知道appid和页面路径 wx.navigateToMiniProgram({appId: appid, // 替换为目标小程序 AppIDpath: pathWithParams, // 小程序路径envVersion: release, // 开发版、体验版或正式版success(res) {console.log("跳转到其他小程序成功!&q…...

Not using native diff for overlay2, this may cause degraded performance……

问题现象 案例:Anolis 8.9(4.19.91-26.an8.x86_64) Overlay2存储驱动程序) 当我们安装好Docker之后,通过systemctl status docker -l 会发现有一个告警信息:levelwarning msg"Not using native dif…...

【自用】管材流转项目 数据库恢复之 PIPE 表 二维码相关 各个表恢复 SQL

总览 1.后端前端和数据库 PIPE 页面的关系 2.后端批量生成二维码 jpg 图片 3.为了保证 PIPE 正常使用的调整 4.TRANSFORM(流转表) 一、后端前端和数据库 PIPE 页面的关系 1.前端 关于PIPE页面,首先,在前端,我们已经…...

【渗透测试】信息收集二

其他信息收集 在渗透测试中,历史漏洞信息收集是一项重要的工作,以下是相关介绍: 历史漏洞信息收集的重要性 提高效率:通过收集目标系统或应用程序的历史漏洞信息,可以快速定位可能存在的安全问题,避免重复…...

测试工程师八股文04|计算机网络 和 其他

一、计算机网络 1、http和https的区别 HTTP和HTTPS是用于在互联网上传输数据的协议。它们都是应用层协议,建立在TCP/IP协议栈之上,用于客户端(如浏览器)和服务器之间的通信。 ①http和https的主要区别在于安全性。http是一种明…...

定时/延时任务-Kafka时间轮源码分析

文章目录 1. 概要2. TimingWheel2.1 核心参数2.2 添加任务2.3 推进时间 3. TimerTaskList3.1 添加节点3.2 删除节点3.3 刷新链表3.4 队列相关 4. 时间轮链表节点-TimerTaskEntry5. TimerTask6. Timer 和 SystemTimer - 设计降级逻辑7. 上层调用8. 小结 1. 概要 时间轮的文章&a…...

如何用状态图进行设计05

到目前为止,我们已经讨论了状态图的原理。这些原理对状态图和扩展状态图都适用。第二章后面的部分主要讲述了扩展状态图的扩展功能。我们将围绕这些增强的功能,使你对BetterState Pro的设计能力有很好的了解。 关于这些内容和其他有关扩展状态图特性的完…...

【计算机视觉】边缘检测

图像的边缘简单来说就是图像中灰度不连续的地方。 1.图像梯度 图像梯度是指图像像素灰度值在某个方向上的变化;图像梯度是图像的一阶导数,实际计算时可以使用差分来近似。 1.1 什么是图像梯度? 图像梯度是一种数学工具,用于描…...

林曦词典|无聊

“林曦词典”是在水墨画家林曦的课堂与访谈里,频频邂逅的话语,总能生发出无尽的思考。那些悠然轻快的、微妙纷繁的,亦或耳熟能详的词,经由林曦老师的独到解析,意蕴无穷,让人受益。于是,我们将诸…...

LabVIEW光栅衍射虚拟仿真系统

随着现代教育技术的快速发展,虚拟仿真实验平台逐渐成为物理实验教学的重要辅助工具。基于LabVIEW的平面透射光栅虚拟仿真系统帮助学生更好地理解和分析光栅衍射现象,提高教学质量和学生的学习兴趣。 项目背景 在波动光学的教学中,光栅衍射实…...

【NumPy进阶】:内存视图、性能优化与高级线性代数

目录 1. 深入理解 NumPy 的内存视图与拷贝1.1 内存视图(View)1.1.1 创建视图1.1.2 视图的特点 1.2 数组拷贝(Copy)1.2.1 创建拷贝1.2.2 拷贝的特点 1.3 视图与拷贝的选择 2. NumPy 的优化与性能提升技巧2.1 向量化操作示例&#x…...

从YOLOv5到训练实战:易用性和扩展性的加强

文章目录 前言一、模型介绍二、YOLOv5网络结构1.Input(输入端):智能预处理与优化策略2.Backbone(骨干网络):高效特征提取3.NECK(颈部):特征增强与多尺度融合4.Prediction…...

Prim 算法在不同权重范围内的性能分析及其实现

Prim 算法在不同权重范围内的性能分析及其实现 1. 边权重取值在 1 到 |V| 范围内伪代码C 代码实现2. 边权重取值在 1 到常数 W 之间结论Prim 算法是一种用于求解加权无向图的最小生成树(MST)的经典算法。它通过贪心策略逐步扩展生成树,确保每次选择的边都是当前生成树到未加…...

canal安装使用

简介 canal [kənl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费 工作原理 canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送 dump 协议…...

python爬虫常用数据保存模板(Excel、CSV、mysql)——scrapy中常用数据提取方法(CSS、XPATH、正则)(23)

文章目录 1、常用数据保存模板2.1 保存为Excel格式2.2 保存为CSV格式2.3 保存至mysql数据库2、scrapy中常用数据提取方法2.1 XPath选择器2.2 CSS选择器2.3 正则表达式1、常用数据保存模板 2.1 保存为Excel格式 # 1、导入模块 from openpyxl import workbook# 2、创建一个exce…...

You need to call SQLitePCL.raw.SetProvider()

在.NET环境中使用Entity Framework Core(EF Core)连接SQLite数据库时,报错。 使用框架 .NET8 错误信息: Exception: You need to call SQLitePCL.raw.SetProvider(). If you are using a bundle package, this is done by calling…...

IoTDB AINode 报错,call inference 301: Error ocurred while executing inference

问题及现象 使用时序数据库 IoTDB 的 AINode 的 call inference 语句后报错: Msg: org.apache.iotdb.jdbc.IoTDBSOLException:301: Error ocurred while executing inference:[tuple object has no attribute inference]解决方法 可以替换 venv 里面的…...

LLM之RAG实战(五十)| FastAPI:构建基于LLM的WEB接口界面

FastAPI是WEB UI接口,随着LLM的蓬勃发展,FastAPI的生态也迎来了新的机遇。本文将围绕FastAPI、OpenAI的API以及FastCRUD,来创建一个个性化的电子邮件写作助手,以展示如何结合这些技术来构建强大的应用程序。 下面我们开始分步骤操…...

项目-移动端适配的几种方案

目录 一、rem方案二、vw适配方案 一、rem方案 以vue2项目为例 下载安装包:npm install amfe-flexible --save在main.js中引入:import ‘amfe-flexible’下载安装包:npm install postcss-pxtorem --save项目下新建postcss.config.js文件&…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

管理学院权限管理系统开发总结

文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

react-pdf(pdfjs-dist)如何兼容老浏览器(chrome 49)

之前都是使用react-pdf来渲染pdf文件,这次有个需求是要兼容xp环境,xp上chrome最高支持到49,虽然说iframe或者embed都可以实现预览pdf,但为了后续的定制化需求,还是需要使用js库来渲染。 chrome 49测试环境 能用的测试…...