OpenWebUI连接不上Ollama模型,Ubuntu24.04
这里写自定义目录标题
- 问题介绍
- 解决方法
问题介绍
- 操作系统 Ubuntu24.04
- Ollama 使用默认安装方法(官网https://github.com/ollama/ollama)
curl -fsSL https://ollama.com/install.sh | sh安装在本机 - OpenWebUI
使用默认docker安装方法(官网教程安装https://docs.openwebui.com/)docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main安装在docker
-
使用
http://127.0.0.1:11434/访问Ollama显示Ollama is running,说明Ollama正常。 -
Ollama中安装了模型,并且可以命令行形式使用。
-
使用
http://localhost:8080/登录OpenWebUI后发现没有模型
解决方法
- 在OpenWebUI管理面板中,
管理Ollama API连接默认为http://host.docker.internal:11434/,这是windows中的方式,需要改为http://127.0.0.1:11434 - 在 访问 Ollama 时遇到问题? 点击这里获取帮助。点击导航到https://github.com/open-webui/open-webui#troubleshooting,根据教程Open WebUI: Server Connection Error
If you’re experiencing connection issues, it’s often due to the WebUI docker container not being able to reach the Ollama server at 127.0.0.1:11434 (host.docker.internal:11434) inside the container . Use the --network=host flag in your docker command to resolve this. Note that the port changes from 3000 to 8080, resulting in the link: http://localhost:8080.
docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main
删除docker,并使用上面的命令重新创建docker,使用http://localhost:8080访问OpenWebUI即可。
相关文章:
OpenWebUI连接不上Ollama模型,Ubuntu24.04
这里写自定义目录标题 问题介绍解决方法 问题介绍 操作系统 Ubuntu24.04Ollama 使用默认安装方法(官网https://github.com/ollama/ollama) curl -fsSL https://ollama.com/install.sh | sh 安装在本机OpenWebUI 使用默认docker安装方法(官网…...
C#C++获取当前应用程序的安装目录和工作目录
很多时候,用户自己点击打开read.exe加载的时候都没有问题,读取ini配置文件也没有问题。但是如果应用程序是开机启动呢?32位Windows系统当前目录是C盘的windows\system32;而64位系统软件启动后默认的当前目录是:C:\Wind…...
Linux中vi和vim的区别详解
文章目录 Linux中vi和vim的区别详解一、引言二、vi和vim的起源与发展三、功能和特性1、语法高亮2、显示行号3、编辑模式4、可视化界面5、功能扩展6、插件支持 四、使用示例1、启动编辑器2、基本操作 五、总结 Linux中vi和vim的区别详解 一、引言 在Linux系统中,vi和…...
2021 年 6 月青少年软编等考 C 语言四级真题解析
目录 T1. 数字三角形问题思路分析T2. 大盗思路分析T3. 最大子矩阵思路分析T4. 小球放盒子思路分析T1. 数字三角形问题 上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。 注…...
UE5编辑器下将RenderTarget输出为UTexture并保存
在使用UE5开发项目时,RenderTarget是一种非常强大的工具,常用于生成实时纹理效果、后处理和调试。而将RenderTarget的内容转换为UTexture并储存,是许多编辑器内的需求都需要的功能。 1.材质球输出至Texture 首先创建一个Actor类,…...
【漏洞复现】CVE-2024-34102 Magento Open Source XXE漏洞
目录 漏洞介绍 影响版本 环境搭建 查看版本 漏洞复现 手动复现 漏洞 poc Magento Open Source 是一个免费开源的电子商务平台,适合中小企业或开发团队通过自定义代码和插件创建在线商店。它由社区开发和支持,功能强大但需要更多的技术投入。Adobe…...
soul大数据面试题及参考答案
如何看待数据仓库? 数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。 从数据存储角度看,它整合了来自多个数据源的数据。这些数据源可能包括业务系统数据库、日志文件等各种结构化和非结构化数据。例如,在电商企业中,它会整合订…...
GLM-4-Plus初体验
引言:为什么高效的内容创作如此重要? 在当前竞争激烈的市场环境中,内容创作已成为品牌成功的重要支柱。无论是撰写营销文案、博客文章、社交媒体帖子,还是制作广告,优质的内容不仅能够帮助品牌吸引目标受众的注意力&a…...
基于springboot+vue的高校校园交友交流平台设计和实现
文章目录 系统功能部分实现截图 前台模块实现管理员模块实现 项目相关文件架构设计 MVC的设计模式基于B/S的架构技术栈 具体功能模块设计系统需求分析 可行性分析 系统测试为什么我? 关于我项目开发案例我自己的网站 源码获取: 系统功能 校园交友平台…...
Nacos 3.0 Alpha 发布,在安全、泛用、云原生更进一步
自 2021 年发布以来,Nacos 2.0 在社区的支持下已走过近三年,期间取得了诸多成就。在高性能与易扩展性方面,Nacos 2.0 取得了显著进展,同时在易用性和安全性上也不断提升。想了解更多详细信息,欢迎阅读我们之前发布的回…...
【前端开发】HTML+CSS网页,可以拿来当作业(免费开源)
HTML代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content_lizhongyu"widthdevice-width, initial-scale1.0"><title>小兔鲜儿-新鲜、惠民、快捷<…...
【人工智能-中级】卷积神经网络(CNN)的中阶应用:从图像分类到目标检测
文章目录 卷积神经网络(CNN)的中阶应用:从图像分类到目标检测1. 图像分类:CNN的基础应用CNN结构概述经典网络架构2. 目标检测:从分类到定位基于区域的目标检测方法单阶段目标检测方法边界框回归与NMS(Non-Maximum Suppression)3. 深度学习中的目标检测挑战与解决方案4. …...
[笔记] 编译LetMeowIn(C++汇编联编程序)过程
文章目录 前言过程下载源码vs2017 创建空项目 引入编译文件改项目依赖属性改汇编编译属性该项目还需注意编译运行 总结 前言 编译LetMeowin 项目发现是个混编项目,c调用汇编的程序,需要配置一下,特此记录一下 过程 下载源码 首先下载源码…...
牛客小白月赛107(A~E)
文章目录 A Cidoai的吃饭思路code B Cidoai的听歌思路code C Cidoai的植物思路code D Cidoai的猫猫思路code E Cidoai的可乐思路code 牛客小白月赛107 A Cidoai的吃饭 思路 签到题,按题意模拟即可 code void solve(){int n,a,b,c;cin >> n >> a &g…...
批量DWG文件转换低版本(CAD图转低版本)——c#插件实现
此插件可实现指定路径下所有dwg文件(包含子文件夹内dwg)一键全部转为低版本(包含2004、2007、2018版本,也可定制指定版本)。效果如下: (使用方法:命令行输入 “netload” 加载插件&…...
安装Python库
安装Python库 一、pip安装参数--no-deps 更换下载源,一劳永逸 二、conda下载 一、pip安装 换源安装并且信任该下载源 pip install pipenv -i http://pypi.douban.com/simple --trusted-host pypi.douban.com参数 –no-deps 有些 packages 会依赖一些其它的 p…...
智慧政务数据中台建设及运营解决方案
数据中台:政府数字化转型的引擎 数据中台作为政府数字化转型的核心驱动力,起源于美军的作战体系,强调高效、灵活与强大。它不仅促进了政府决策的科学性,还推动了政府服务的精细化与智能化。 数据中台的应用场景:数字…...
陪玩系统小程序源码/游戏陪玩APP系统用户端有哪些功能?游戏陪玩小程序APP源码开发
多客陪玩系统-游戏陪玩线下预约上门服务等陪玩圈子陪玩社区系统源码 陪玩系统源码,高质量的陪玩系统源码,游戏陪玩APP源码开发,语音陪玩源码搭建: 线上陪玩活动组局与线下家政服务系统的部署需要综合考虑技术选型、开发流程、部署流程、功能实…...
米哈游大数据面试题及参考答案
怎么判断两个链表是否相交?怎么优化? 判断两个链表是否相交可以采用多种方法。 一种方法是使用双指针。首先分别遍历两个链表,得到两个链表的长度。然后让长链表的指针先走两个链表长度差的步数。之后,同时移动两个链表的指针,每次比较两个指针是否指向相同的节点。如果指…...
使用Hydra库简化配置管理
使用Hydra库简化配置管理 简介 在现代软件开发中,配置管理是至关重要的。应用程序的灵活性和可维护性很大程度上取决于其如何处理配置。Hydra是一个由Facebook AI Research (FAIR) 开发的Python库,它旨在简化复杂应用的配置过程。Hydra使得开发者可以轻…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
