人工智能大语言模型起源篇(二),从通用语言微调到驾驭LLM
上一篇:《人工智能大语言模型起源篇(一),从哪里开始》
(5)Howard 和 Ruder 于2018年发表的《Universal Language Model Fine-tuning for Text Classification》,https://arxiv.org/abs/1801.06146
这篇论文从历史的角度来看非常有意思。尽管它是在原始的《Attention Is All You Need》变换器发布一年后写的,但它并没有涉及变换器,而是专注于递归神经网络。然而,它仍然值得注意,因为它有效地提出了语言模型的预训练和迁移学习,用于下游任务。
尽管迁移学习在计算机视觉中已经被确立,但在自然语言处理(NLP)中还不普遍。ULMFit 是首批展示预训练语言模型并对其进行微调,从而在许多NLP任务中取得最先进成果的论文之一。
ULMFit 提出的微调语言模型的三阶段过程如下:
1. 在大规模文本语料库上训练语言模型。
2. 在任务特定的数据上微调这个预训练的语言模型,使其能够适应文本的特定风格和词汇。
3. 在任务特定数据上微调分类器,并逐步解冻各层,以避免灾难性遗忘。
这个过程——在大规模语料库上训练语言模型,然后在下游任务上进行微调——是基于变换器的模型和像BERT、GPT-2/3/4、RoBERTa等基础模型所使用的核心方法。
然而,ULMFiT的关键部分——逐步解冻,通常在实践中不会常规进行,尤其是在使用变换器架构时,通常会一次性微调所有层。
来源:https://arxiv.org/abs/1801.06146
(6)Devlin、Chang、Lee 和 Toutanova 于2018年发表的《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》,https://arxiv.org/abs/1810.04805
继原始的变换器架构之后,大型语言模型的研究开始分为两个方向:一种是用于预测建模任务(如文本分类)的编码器风格变换器,另一种是用于生成建模任务(如翻译、总结和其他形式的文本生成)的解码器风格变换器。
上面的BERT论文介绍了掩蔽语言模型(masked-language modeling)和下一句预测(next-sentence prediction)这一原始概念。它仍然是最具影响力的编码器风格架构。如果你对这一研究方向感兴趣,我推荐你进一步了解RoBERTa,它通过去除下一句预测任务,简化了预训练目标。
来源:https://arxiv.org/abs/1810.04805
(7)Radford 和 Narasimhan 于2018年发表的《Improving Language Understanding by Generative Pre-Training》,https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
原始的GPT论文介绍了流行的解码器风格架构,并通过下一个词预测进行预训练。BERT可以被看作是一个双向变换器,因为它的预训练目标是掩蔽语言模型,而GPT是一个单向的、自回归模型。虽然GPT的嵌入也可以用于分类任务,但GPT方法是当今最具影响力的大型语言模型(LLM)的核心,例如ChatGPT。
如果你对这个研究方向感兴趣,我建议你进一步阅读GPT-2 https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe和GPT-3 https://arxiv.org/abs/2005.14165的论文。这两篇论文展示了LLM能够进行零-shot和少-shot学习,并突出了LLM的突现能力。GPT-3仍然是当前一代LLM(如ChatGPT)训练的流行基准和基础模型——我们稍后会作为单独的条目讨论导致ChatGPT的InstructGPT方法。
来源: https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
(8)Lewis、Liu、Goyal、Ghazvininejad、Mohamed、Levy、Stoyanov 和 Zettlemoyer 于2019年发表的《BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension》,https://arxiv.org/abs/1910.13461
如前所述,BERT类型的编码器风格LLM通常更适用于预测建模任务,而GPT类型的解码器风格LLM则更擅长生成文本。为了兼顾两者的优点,上面的BART论文将编码器和解码器部分结合在一起(这与原始的变换器架构(本清单中的第二篇论文)并无太大区别)。
来源:https://arxiv.org/abs/1910.13461
(9)Yang、Jin、Tang、Han、Feng、Jiang、Yin 和 Hu 于2023年发表的《Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond》,https://arxiv.org/abs/2304.13712
这不是一篇研究论文,但可能是迄今为止最好的架构综述,展示了不同架构的演变过程。然而,除了讨论BERT风格的掩蔽语言模型(编码器)和GPT风格的自回归语言模型(解码器)外,它还提供了关于预训练和微调数据的有用讨论和指导。
现代 LLM 的进化树,来自 https://arxiv.org/abs/2304.13712。
相关文章:

人工智能大语言模型起源篇(二),从通用语言微调到驾驭LLM
上一篇:《人工智能大语言模型起源篇(一),从哪里开始》 (5)Howard 和 Ruder 于2018年发表的《Universal Language Model Fine-tuning for Text Classification》,https://arxiv.org/abs/1801.06…...
VBA 连续打印多个内容成PDF
VBA 连续打印多个内容成PDF Dim wb As Workbook Dim sht1 As Worksheet Set sht1 ActiveSheet PT ThisWorkbook.PathApplication.ScreenUpdating FalseApplication.DisplayAlerts FalseApplication.Calculation xlCalculationManual For i [aa2] To [ab2][ad2] iSet wb …...

9. 高效利用Excel设置归档Tag
高效利用Excel设置归档Tag 1. Excle批量新建/修改归档Tag2. 趋势记录模型批量导入归档Tag(Method1)2. 趋势记录模型批量导入归档Tag(Method2)3. 趋势记录控件1. Excle批量新建/修改归档Tag Fcatory Talk常常需要归档模拟量,对于比较大的项目工程会有成千上万个重要数据需…...
ubuntu系统生成SSL证书配置https
自签名【Lets Encrypt】的测试证书,有效期三个月。 第一步:安装acme,如果没有安装git,需要提前安装 下载came资源 git clone https://github.com/Neilpang/acme.sh.git 无法访问,可以试用gitee的资源,安…...

顺序表(数据结构初阶)
文章目录 顺序表一:线性表1.1概念: 二:顺序表2.1概念与结构:2.2分类:2.2.1静态顺序表2.2.2动态顺序表 2.3动态顺序表的实现声明(初始化)检查空间容量尾插头插尾删头删查找指定位置之前插入数据指…...

AOF和RDB【Redis持久化篇】
文章目录 1.什么是持久化?2.RDB3.AOF 1.什么是持久化? Redis是跑在内存里的,当程序重启或者服务器崩溃,数据就会丢失,如果业务场景希望重启之后数据还在,就需要持久化,即把数据保存到可永久保存…...

数据可视化大屏UI组件库:B端科技感素材PSD
在数据可视化领域,一个出色的大屏UI设计不仅能够准确传达数据背后的信息,更能提升用户的视觉体验。然而,对于UI设计师而言,设计这样一款界面往往面临着寻找合适设计素材的挑战。为了应对这一难题,我们推出了这款数据可…...
【力扣算法】234.回文链表
快慢指针:一个指针走两步,一个指针走一步,当快指针走到链表末尾时,慢指针走到中间位置。 逆转链表:根据指针位置分成两个表,逆转第二个表。 按序判断就可以,如果是相同就是回文,反之…...

MVC流程分析
DisaptcherServlet本质是servlet,执行init()方法,自启动底层执行代码, 作用: 1、读取springmvc配置文件,创建Controller对象,放入容器中,map<"id",对象> 2、接收用户请求&#…...
编程中常见的技术难题有哪些?
技术的未来:如何驾驭变革 引言 在科技迅猛发展的今天,变革已成为常态。你是否感受到这一波潮流的力量?我们正身处一个充满机遇与挑战的时代。诸如人工智能、区块链、云计算等技术如同狂风骤雨,席卷我们的生活与工作方式。那么&a…...

「Mac玩转仓颉内测版50」小学奥数篇13 - 动态规划入门
本篇将通过 Python 和 Cangjie 双语介绍动态规划的基本概念,并解决一个经典问题:斐波那契数列。学生将学习如何使用动态规划优化递归计算,并掌握编程中的重要算法思想。 关键词 小学奥数Python Cangjie动态规划斐波那契数列 一、题目描述 …...

前端退出对话框也就是点击右上角的叉,显示灰色界面,已经解决
文章目录 遇到一个前端bug,点击生成邀请码 打开对话框 然后我再点击叉号,退出对话框,虽然退出了对话框,但是显示灰色界面。如下图: 导致界面就会失效,点击任何地方都没有反应。 发现是如下代码的问题&am…...
使div每次隐藏显示后都从顶部开始
<div ref"addmodel" > <!-- 这里内容很长,超出屏幕。。。 --> </div> methods:{ // 页面显示时滚动至顶部 scrollToTop() { const addmodel this.$refs.addmodel; if (addmodel) { addmodel.scrollTop 0; } }, } 在div每次显示或者…...

资源付费软件开发 资源付费系统源码 资源付费类型小程序APP
应用场景 资源付费软件广泛应用于多个领域,以下是其主要应用场景: 在线教育: 各类教育机构、名师通过资源付费软件提供课程、讲座等学习资源,为学生提供个性化的学习服务。用户可以通过软件学习专业知识、职业技能等,…...

文件的读写
所涉及到的函数如下:<stdio.h> 函数介绍网站:cplusplus.com - The C Resources Network 读写文件之前要先打开文件,使用完要关闭文件归返空间: fopen 打开 fclose 关闭 返回的是FILE*型,第一个参数是文…...

城市大脑新型智慧城市数据中台建设方案
建设背景与现状 随着城市化进程的加速,城市数据呈现出爆炸式增长,但数据的整合、共享和利用却面临诸多挑战。信息孤岛、数据冗余、管理分散等问题日益突出,制约了智慧城市的发展。为了解决这些问题,构建城市大脑新型智慧城市数据…...

二三(Node2)、Node.js 模块化、package.json、npm 软件包管理器、nodemon、Express、同源、跨域、CORS
1. Node.js 模块化 1.1 CommonJS 标准 utils.js /*** 目标:基于 CommonJS 标准语法,封装属性和方法并导出*/ const baseURL "http://hmajax.itheima.net"; const getArraySum (arr) > arr.reduce((sum, item) > (sum item), 0);mo…...

【sgFileLink】自定义组件:基于el-link、el-icon标签构建文件超链接组件,支持垃圾桶删除、点击预览视频/音频/图片/PDF格式文件
sgFileLink源代码 <template><div :class"$options.name"><el-link click.stop"clickFile(data)"><img :src"getSrc(data)" /><span>{{ getFileNameAndSize(data) }}</span></el-link><el-linkcl…...

Kafka - 消息乱序问题的常见解决方案和实现
文章目录 概述一、MQ消息乱序问题分析1.1 相同topic内的消息乱序1.2 不同topic的消息乱序 二、解决方案方案一: 顺序消息Kafka1. Kafka 顺序消息的实现1.1 生产者:确保同一业务主键的消息发送到同一个分区1.2 消费者:顺序消费消息 2. Kafka 顺…...
【golang】匿名内部协程,值传递与参数传递
代码例子 下面代码的区别是直接调用循环变量,这里使用的就是这个变量的引用,而不是将参数的副本传递给协程执行 for task : range taskChan {wg.Add(1)go func() {defer wg.Done()task.Do() // 使用外部循环变量}() }func DistributeTasks(taskChan &…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...