【图像处理】利用numpy、opencv、python实现车牌检测
|
利用opencv实现车牌检测
整体流程涉及5个部分
- 图像通道转换
- 对比度增强
- 边缘连接
- 二值化
- 边界区域裁剪
图像通道转换
将RGB图像转换为HSV图像,仅保留V通道。V通道表示颜色的明暗,常用于图像对比度拉伸、直方图均衡化等流程。
原图像:
V通道图像:
对比度增强
通过顶帽变换来实现对比度增强。顶帽变换用于提取图像的小区域和局部细节。白顶帽变换用于提取图像中比周围环境亮的小物体或细节;黑顶帽变换用于提取图像中比周围环境暗的小物体或细节。
白顶帽变换:
黑顶帽变化:
通过白顶帽、黑顶帽的联合处理: I e n h a n c e d = I o r i g i n a l + I w h i t e − t o p _ h a t − I b l a c k − t o p _ h a t I_{enhanced}=I_{original}+I_{white-top\_hat}-I_{black-top\_hat} Ienhanced=Ioriginal+Iwhite−top_hat−Iblack−top_hat,其中 I o r i g i n a l I_{original} Ioriginal表示原图像, I w h i t e − t o p _ h a t I_{white-top\_hat} Iwhite−top_hat表示白顶帽处理后图像, I b l a c k − t o p _ h a t I_{black-top\_hat} Iblack−top_hat表示黑顶帽处理后图像,得到对比度增强后的图像:
边缘连接
增强对比度后,很多车牌边缘不连续,例如
需要通过膨胀操作(Dilation Operation)来扩展边缘,实现边缘连接的目的。
添加膨胀操作后,图像转变为:
二值化
将单通道V图像转换为二值图像,具体策略为Adaptive thresholding
边界区域裁剪
- 首先,利用cv2.findContours检测边界,并且获得边界的层级(hierarchy)。
- 车牌检测可以理解为找到内边界,而整个图像的背景可以理解为是外边界。下图是检测出的内边界
对内边界进行阈值判断处理,过滤掉明显错误的情况。例如过滤面积小于2000的内边界(具体数值需要按照实际情况来定) - 对于每个内边界,计算外接最小的矩形(可以通过统计边界内最左、最上、最右、最下的点来合成矩形),作为初步检测框
- 有一些检测框可能包括多个车牌,宽度、高度比较大。对于这种情况,需要对检测框按照宽度、高度均匀分割。以下是一个高度过大的例子,需按高度均分
- 有一些车牌因为自身比较模糊,导致检测框不准确,可以通过统计信息来过滤掉,本方法暂不处理。例如
最终,整张图有41个车牌,通过上述方法,检测到了40个车牌,效果不错。漏检的车牌本身边缘不清晰,检测难度较大
消融实验
方法 | 最终图像检测框 | 车牌检测数量 |
---|---|---|
最终方法 | ![]() | 40 |
去掉对比度增强 | ![]() | 39 |
去掉边缘连接 | ![]() | 39 |
内边界面积过滤阈值4000 | ![]() | 38 |
内边界面积过滤阈值5000 | ![]() | 38 |
代码
"""
主要的步骤为:
1)提取单通道图片,选项为 (灰度图片/HSV中的value分支)
2)提升对比度,选项为 (形态学中的顶帽/灰度拉伸)
3)边缘连接(膨胀)
4)二值化
5)利用findcontours函数找到边缘
6)裁剪图片,车牌图片存储
7) 对车牌预处理
8)方向矫正
9)车牌精确区域搜索
10) 字符分割
11) 字符识别
"""import cv2
import copy
import numpy as np
import math
import osdef SingleChannel(img) :"""用于车牌检测得到单通道图片,主要测试两种方式,灰度通道以及hsv中的v通道:param img: 输入图片:return:"""hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)hue, saturation, value = cv2.split(hsv)cv2.imshow("SingleChannel", value)return valuedef Contrast(img) :"""用于车牌检测利用tophat,提高图片对比度,:param img: 输入图片:return:"""kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))# applying topHat/blackHat operationstopHat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)cv2.imshow("tophat", topHat)blackHat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)cv2.imshow("blackhat", blackHat)add = cv2.add(img, topHat)subtract = cv2.subtract(add, blackHat)cv2.imshow('Constrast', subtract)return subtractdef threshold(img) :"""用于车牌检测采用cv2.adaptiveThreshold方法,对图片二值化:param img: 输入图像:return:"""thresh = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 19, 9)cv2.imshow("thresh", thresh)return threshglobal crop_num
crop_num = 0def drawCoutrous(img_temp) :"""对输入图像查找内边缘,设置阈值,去除一些面积较小的内边缘:param img_temp: 输入图像,经过预处理:return:"""threshline = 2000imgCopy = copy.deepcopy(img_temp)contours, hierarchy = cv2.findContours(imgCopy, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)# print(len(contours), contours[0].shape)# print(hierarchy.shape)maxarea = 0conid = 0img_zero = np.zeros(img.shape)# print("img_zero.shape is : ",img_zero.shape)num_contours = 0contoursList = []for i in range(len(contours)) :if hierarchy[0][i][3] >= 0 :temparea = math.fabs(cv2.contourArea(contours[i]))# print(math.fabs(cv2.contourArea(contours[i])))if temparea > maxarea :conid = imaxarea = tempareaif temparea > threshline :num_contours += 1if num_contours % 7 == 0 :cv2.drawContours(img_zero, contours, i, (0,0,255),1)if num_contours % 7 == 1 :cv2.drawContours(img_zero, contours, i, (255,0,0),1)if num_contours % 7 == 2 :cv2.drawContours(img_zero, contours, i, (0,255,0),1)if num_contours % 7 == 3 :cv2.drawContours(img_zero, contours, i, (0,255,255),1)if num_contours % 7 == 4 :cv2.drawContours(img_zero, contours, i, (255,0,255),1)if num_contours % 7 == 5 :cv2.drawContours(img_zero, contours, i, (255,255,0),1)if num_contours % 7 == 6:cv2.drawContours(img_zero, contours, i, (255, 255, 255), 1)# print(contours[i].shape)contoursList.append(contours[i])# print("maxarea: ",maxarea)# print("number of contours is ", num_contours)# cv2.drawContours(img_zero, contours, conid, (0, 0, 255), 1)cv2.imshow("with contours",img_zero)return contoursListdef DrawRectangle(img, img_temp, ConList) :"""得到车牌边缘的的x,y坐标最小最大值,再原图上绘制bounding box,得到裁剪后的车牌图像:param img: 原图:param img_temp: 二值图像:param ConList: 图像的边缘轮廓:return: null"""length = len(ConList)rectanglePoint = np.zeros((length, 4, 1, 2), dtype = np.int32)img_zeros = np.zeros(img_temp.shape)img_copy = copy.deepcopy(img)img_copy_1 = copy.deepcopy(img)# print("img_zeros, length; ", img_zeros.shape, length)for i in range(length) :contours = ConList[i]minx, maxx, miny, maxy = 1e6, 0, 1e6, 0for index_num in range(contours.shape[0]) :if contours[index_num][0][0] < minx :minx = contours[index_num][0][0]if contours[index_num][0][0] > maxx :maxx = contours[index_num][0][0]if contours[index_num][0][1] < miny :miny = contours[index_num][0][1]if contours[index_num][0][1] > maxy :maxy = contours[index_num][0][1]# print(minx, maxx, miny, maxy)rectanglePoint[i][0][0][0], rectanglePoint[i][0][0][1] = minx, minyrectanglePoint[i][1][0][0], rectanglePoint[i][1][0][1] = minx, maxyrectanglePoint[i][2][0][0], rectanglePoint[i][2][0][1] = maxx, maxyrectanglePoint[i][3][0][0], rectanglePoint[i][3][0][1] = maxx, miny# rectanglePoint.dtype = np.int32# print(rectanglePoint[i].shape)crop_save(minx, maxx, miny, maxy, img_copy_1)# print("dx: ",maxx-minx,"dy: ",maxy-miny, "area: ", (maxx-minx)*(maxy-miny))cv2.polylines(img_copy, [rectanglePoint[i]], True, (0,0,255),2)cv2.imshow("img_zeros_haha", img_copy)def crop_save(minx, maxx, miny, maxy, img_original) :"""裁剪原图,根据minx,maxx,miny,maxy:param minx: x坐标最小值:param maxx: x坐标最大值:param miny: y坐标最小值:param maxy: y坐标最大值:param img_original: 由于需要将绘制结果再原图中显示,输入原图:return:"""global crop_numepsx = 60epsy = 30dx = maxx - minxdy = maxy - minyif dx == dy :returnif dx >= 600 - epsx :dx1, dx2, dx3, dx4 = minx, minx + 1 * int(dx / 3), minx + 2 * int(dx / 3), maxxsave_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'# cv2.imwrite(save_pth, img_original[dx1:dx2, miny:maxy,:])cv2.imwrite(save_pth, img_original[miny:maxy, dx1:dx2, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[miny:maxy, dx2:dx3, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[miny:maxy, dx3:dx4, :])crop_num += 1elif dx >= 400 - epsx :dx1, dx2, dx3 = minx, minx + 1 * int(dx / 2), maxxsave_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[miny:maxy, dx1:dx2, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[miny:maxy, dx2:dx3, :])crop_num += 1elif dy >= 240 - epsy :dy1, dy2, dy3, dy4 = miny, miny + 1 * int(dy / 3), miny + 2 * int(dy / 3), maxysave_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[dy1: dy2, minx:maxx, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[dy2: dy3, minx:maxx, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[dy3: dy4, minx:maxx, :])crop_num += 1elif dy >= 160 - epsy :dy1, dy2, dy3 = miny, miny + 1 * int(dy / 2), maxysave_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[dy1: dy2, minx:maxx, :])crop_num += 1save_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[dy2: dy3, minx:maxx, :])crop_num += 1elif dx <= 200 + epsx :dx1, dx2 = minx, maxxsave_pth = './crop40/cropimg_' + str(crop_num) + '.jpg'cv2.imwrite(save_pth, img_original[miny:maxy, dx1:dx2, :])crop_num += 1else :passif __name__ == '__main__' :pth = 'License_plates.jpg'img = cv2.imread(pth)img = cv2.resize(img, (292 * 4, 173 * 4))cv2.imshow("original",img)# 1)提取单通道图片,选项为 (灰度图片/HSV中的value分支)singlechannel_img = SingleChannel(img)# 2)提升对比度contrast_img = Contrast(singlechannel_img)# contrast_img = singlechannel_img# 3)边缘连接(膨胀)kernel = np.ones((2, 2), np.uint8)dilation_img = cv2.dilate(contrast_img, kernel, iterations=1)cv2.imshow("dilate", dilation_img)# dilation_img = contrast_img# 4) 二值化threshold_img = threshold(dilation_img)# 5)利用findcontours函数找到边缘contoursList = drawCoutrous(threshold_img)# 6) 裁剪图片,车牌图片存储DrawRectangle(img, threshold_img, contoursList)cv2.waitKey()cv2.destroyAllWindows()
相关文章:

【图像处理】利用numpy、opencv、python实现车牌检测
| 利用opencv实现车牌检测 整体流程涉及5个部分 图像通道转换对比度增强边缘连接二值化边界区域裁剪 图像通道转换 将RGB图像转换为HSV图像,仅保留V通道。V通道表示颜色的明暗,常用于图像对比度拉伸、直方图均衡化等流程。 原图像: V通…...
ModuleNotFoundError: No module named ‘torchvision.transforms.functional_tensor‘
问题: 运行代码时,报错: … File “/home/xzy/anaconda3/envs/groundinggpt/lib/python3.10/site-packages/pytorchvideo/transforms/augmix.py”, line 6, in from pytorchvideo.transforms.augmentations import ( File “/home/xzy/anac…...
Android无障碍服务监听实现自动点击按钮
原理: 通过监听窗口改变事件,监听目标应用,通过视图ID(或文本、或描述、或其他如坐标之类的)找到目标视图,使用无障碍动作点击方法点击它 无障碍服务实现: 1、写一个自己的无障碍服务继承Acc…...
Deveco Studio首次编译项目初始化失败
编译项目失败 Ohpm install失败的时候重新使用管理者打开程序 build init 初始化失败遇到了以下报错信息 Installing pnpm8.13.1... npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/pnpm failed, r…...
Redis缓存应用场景【Redis场景上篇】
文章目录 1.缓存基础2.缓存异步场景1.缓存穿透2.缓存击穿3.缓存雪崩总结 3.缓存一致性 1.缓存基础 Redis由于性能高效,通常可以做数据库存储的缓存。一般而言,缓存分为服务端缓存和客户端缓存。缓存有以下三种模式: Cache Aside(…...

线程与进程基础
文章目录 前言一、 线程与进程1.1 什么是线程与进程?1.2 并发与并行1.3 同步调用与异步调用1.4 为什么要使用多线程? 前言 在学习juc前,需要先对进程和线程之间整体有一个认知。我们之前或多或少接触过,一些特别高大上的概念&…...

electron 打包 webview 嵌入需要调用电脑摄像头拍摄失败问题
electron 打包 webview 嵌入需要调用电脑摄像头拍摄失败问题 这篇文章是接我cocos专栏的上一篇文章继续写的,我上一篇文章写的是 cocos 开发触摸屏项目,需要嵌入一个网页用来展示,最后通过 electron 打包成 exe 程序,而且网页里面…...

OpenCV的简单练习
1、读取一张彩色图像并将其转换为灰度图。 import matplotlib.pyplot as pltimg plt.imread("./flower.png") # 灰度化 img_gray img[:,:,0]*0.299 img[:,:,1]*0.587 img[:,:,2]*0.114plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(img_gray,c…...

JAVA:建造者模式(Builder Pattern)的技术指南
1、简述 建造者模式(Builder Pattern)是一种创建型设计模式,它通过将对象的构造过程与表示分离,使得相同的构造过程可以创建不同的表示。建造者模式尤其适用于创建复杂对象的场景。 设计模式样例:https://gitee.com/lhdxhl/design-pattern-example.git 本文将详细介绍建…...

12.11函数 结构体 多文件编译
1.脑图 定义一个数组,用来存放从终端输入的5个学生的信息【学生的信息包含学生的姓名、年纪、性别、成绩】 1>封装函数 录入5个学生信息 2>封装函数 显示学生信息 3>封装函数 删除第几个学生信息,删除后调用显示学生信息函数 显示 4> 封…...
Debezium系列之:使用Debezium采集oceanbase数据库
Debezium系列之:使用Debezium采集oceanbase数据库 一、oceanbase数据库二、安装OceanBase三、安装oblogproxy四、基于Docker的简单采集案例五、生产实际应用案例Debezium 是一个开源的分布式平台,用于监控数据库变化和捕捉数据变动事件,并以事件流的形式导出到各种消费者。D…...

VMware虚拟机 Ubuntu没有共享文件夹的问题
在虚拟机的Ubuntu系统中,共享文件目录存放在 mnt/hgfs 下面,但是我安装完系统并添加共享文件后发现,在mnt下连/hgfs目录都没有。 注意:使用共享文件目录需要已安装VMtools工具。 添加共享文件目录 一:在超级用户下 可…...

spring使用rabbitmq当rabbitmq集群节点挂掉 spring rabbitmq怎么保证高可用
##spring rabbitmq代码示例 Controller代码 import com.alibaba.fastjson.JSONObject; import com.newland.mi.config.RabbitDMMQConfig; import org.springframework.amqp.core.Message; import org.springframework.amqp.core.MessageProperties; import org.springframewo…...

简单vue3前端打包部署到服务器,动态配置http请求头后端ip方法教程
vue3若依框架前端打包部署到服务器,需要部署到多个服务器上,每次打包会很麻烦,今天教大家一个动态配置请求头api的方法,部署后能动态获取(修改)对应服务器的请求ip 介绍两种方法,如有需要可以直接尝试步骤一ÿ…...
C语言关于溢出和不溢出的判断
通过实验来判断整数溢出,浮点数溢出的情况 #include <stdio.h> #include <limits.h> #include <float.h> int main(void) { // 整数溢出 int int_max INT_MAX; // INT_MAX 是 int 类型的最大值 int int_min INT_MIN; // INT_MIN …...
活动预告 |【Part1】Microsoft Azure 在线技术公开课:使用 Microsoft Fabric 实现数据湖仓
课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft Cloud 技术的了解。参加“使用 Microsoft Fabric 实现数据湖仓”活动,了解如何在 AI 的帮助下统一数据分析。了解如何简…...
Unreal的Audio::IAudioCaptureStream在Android中录制数据异常
修改OpenAudioCaptureStream启动参数为PCM_32,在PC上正常,在Android系统,读取的的数据计算出的音量值在0.4-0.6之间跳动,数据异常。 Audio::FAudioCaptureDeviceParams Params;/** 设置声卡不支持的采样数和通道数开始音频流不会成…...

6、AI测试辅助-测试报告编写(生成Bug分析柱状图)
AI测试辅助-测试报告编写(生成Bug分析柱状图) 一、测试报告1. 创建测试报告2. 报告补充优化2.1 Bug图表分析 3. 风险评估 总结 一、测试报告 测试报告内容应该包含: 1、测试结论 2、测试执行情况 3、测试bug结果分析 4、风险评估 5、改进措施…...

【第五节】docker应用系列篇: 使用Docker容器实现ElasticSearch+Kibana部署
系列文章目录 【第五节】docker应用系列篇: 使用Docker容器实现ElasticSearchKibana部署 系列文章目录前言一、 docker运行es二、 docker运行kibina 前言 配一次,真觉得方面 一、 docker运行es docker pull elasticsearch:7.17.0# mkdir -p /opt/es/co…...

openwrt 通过DHCP/DNS(Dnsmasq)屏蔽指定域名(hosts)
1、准备好hosts文件 2、登录openwrt后台:系统-TTYD终端-root登录: cd /etc ls vi hosts_by_me vi hosts_by_me 创建/打开 hosts_by_me文件,把准备好的hosts文件的内容复制粘贴进去,然后保存退出:wq cat hosts_by_me查看确认保…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...