Python随机抽取Excel数据并在处理后整合为一个文件
本文介绍基于Python语言,针对一个文件夹下大量的Excel表格文件,基于其中每一个文件,随机从其中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法。
首先,我们来明确一下本文的具体需求。现有一个文件夹,其中有大量的Excel表格文件(在本文中我们就以.csv格式的文件为例);如下图所示。

其中,每一个Excel表格文件都有着如下图所示的数据格式;其中的第1行表示每一列的名称,第1列则表示时间。

我们希望实现的,就是从每一个Excel表格文件中,随机选取10行数据(第1行数据肯定不能被选进去,因为其为列名;第1列数据也不希望被选进去,因为这个是表示时间的数据,我们后期不需要),并将这一文件夹中全部的Excel表格文件中每一个随机选出的10行数据合并到一起,作为一个新的Excel表格文件。
明白了需求,我们即可开始代码的撰写;本文用到的具体代码如下所示。
# -*- coding: utf-8 -*-
"""
Created on Fri May 19 01:47:06 2023@author: fkxxgis
"""import os
import pandas as pdoriginal_path = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/19_2022Data"
result_path = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/20_Train_Model"result_df = pd.DataFrame()for file in os.listdir(original_path):if file.endswith(".csv"):df = pd.read_csv(os.path.join(original_path, file))sample_df = df.sample(n = 10, axis = 0)sample_df = sample_df.iloc[ : , 1 : ]result_df = pd.concat([result_df, sample_df])result_df.to_csv(os.path.join(result_path, "Train_Model_1.csv"), index = False)
代码中首先定义了原始数据文件夹(也就是有大量Excel表格文件的文件夹)路径和结果数据文件夹路径。然后,创建了一个空的DataFrame,用于存储抽样后的数据。
接下来是一个for循环,遍历了原始数据文件夹中的所有.csv文件,如果文件名以.csv结尾,则读取该文件。然后,使用Pandas中的sample()函数随机抽取了该文件中的10行数据,并使用iloc[]函数删除了10行数据中的第1列(为了防止第1列表示时间的列被选中,因此需要删除)。最后,使用Pandas中的concat()函数将抽样后的数据添加到结果DataFrame中。
最后,使用Pandas中的to_csv()函数将结果DataFrame保存到结果数据文件夹中,文件名为Train_Model_1.csv,并设置index = False表示不保存索引。
运行上述代码,我们即可获得数据合并后的文件,且第1列数据也已经被剔除了。
至此,大功告成。
文章转载自:疯狂学习GIS
原文链接:https://www.cnblogs.com/fkxxgis/p/18600993
体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构
相关文章:
Python随机抽取Excel数据并在处理后整合为一个文件
本文介绍基于Python语言,针对一个文件夹下大量的Excel表格文件,基于其中每一个文件,随机从其中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法。 首先,我们来明确一下本文的具体需求。…...
Linux+Docker onlyoffice 启用 HTTPS 端口支持
文章目录 一、需求二、配置2.1 创建容器2.2 进入容器2.3 生成私钥和证书 2.4 测试访问 一、需求 上篇文章介绍了如何搭建一个 onlyoffice 在线预览服务,但是我们实际场景调用该服务的网站是协议是 https 的 ,但是 onlyoffice 服务还没做配置,…...
在 Visual Studio Code 中编译、调试和执行 Makefile 工程 llama2.c
在 Visual Studio Code 中编译、调试和执行 Makefile 工程 llama2.c 1. Installing the extension (在 Visual Studio Code 中安装插件)1.1. Extensions for Visual Studio Code1.2. C/C1.2.1. Pre-requisites 1.3. Makefile Tools 2. Configuring your project (配置项目)2.1.…...
python中math模块常用函数
文章目录 math模块简介各种三角函数反三角函数取整函数欧几里得距离绝对值最大公约数开根号幂阶乘函数 math模块简介 math模块是python标准库的一部分,提供了对于浮点数相关的数学运算,下面是常用的一些function 各种三角函数反三角函数 math.cos、ma…...
优化 Vue 3 开发体验:配置 Vite 使用 WebStorm 作为 Vue DevTools 的默认编辑器
优化 Vue 3 开发体验:配置 Vite 使用 WebStorm 替代 VS Code 作为 Vue DevTools 的默认编辑器 在 Vue 3 项目开发中,合理配置开发工具可以大大提升我们的工作效率。本文将介绍如何配置 Vite,使其在使用 Vue DevTools 时将默认编辑器从 VS Co…...
【C语言练习(9)—有一个正整数,求是几位数然后逆序打印】
C语言练习(9) 文章目录 C语言练习(9)前言题目题目解析结果总结 前言 主要到整数的取余(%)和整数的取商(/),判断语句if…else if …else的使用 题目 给一个不多于3位的正整数,要求:一、求它是几位数&…...
热敏打印机的控制
首次接触热敏打印机,本来没有特别之处,花了大概十天时间完成一款猫学王热敏打印机,给到客户体验后,客户反馈说打字看起来不明显,打印照片有条纹,所以引起了我对于他的关注,几点不足之处需要优化…...
【closerAI ComfyUI】电商赋能,AI模特套图生产,各种姿势自定义,高度保持人物服饰场景一致性,摆拍街拍专用
closerAIGCcloserAI,一个深入探索前沿人工智能与AIGC领域的资讯平台,我们旨在让AIGC渗入我们的工作与生活中,让我们一起探索AIGC的无限可能性!aigc.douyoubuy.cn 【closerAI ComfyUI】电商赋能,AI模特套图生产,各种姿势自定义,高度保持人物服饰场景一致性,摆拍街拍专用…...
ARM学习(36)静态扫描规则学习以及工具使用
笔者来学习了解一下静态扫描以及其规则,并且亲身是实践一下对arm 架构的代码进行扫描。 1、静态扫描认识 静态扫描:对代码源文件按照一定的规则进行扫描,来发现一些潜在的问题或者风险,因为不涉及代码运行,所以其一般只是发现一些规范或则一些质量问题,当然这些可能存在潜…...
使用 Docker Compose 部署 Redis 主从与 Sentinel 高可用集群
文章目录 使用 Docker Compose 部署 Redis 主从与 Sentinel 高可用集群Redis 主从架构简介Redis Sentinel 简介配置文件1. 主节点配置 (redis-master.conf)2. 从节点配置 (redis-slave1.conf 和 redis-slave2.conf)redis-slave1.confredis-slave2.conf3. Sentinel 配置 (sentin…...
警惕!手动调整服务器时间可能引发的系统灾难
警惕!手动调整服务器时间可能引发的系统灾难 1. 鉴权机制1.1 基于时间戳的签名验证1.2 基于会话的认证机制(JWT、TOTP) 2. 雪花算法生成 ID 的影响2.1 时间戳回拨导致 ID 冲突2.2 ID 顺序被打乱 3. 日志记录与审计3.1 日志顺序错误3.2 审计日…...
MySQL追梦旅途之性能优化
1、索引优化 索引可以显著加速查询操作,但过多或不适当的索引也会带来负面影响(如增加写入开销)。因此,选择合适的索引至关重要。 创建索引: 为经常用于WHERE子句、JOIN条件和ORDER BY排序的列创建索引。 CREATE I…...
【机器学习】【无监督学习——聚类】从零开始掌握聚类分析:探索数据背后的隐藏模式与应用实例
从零开始掌握聚类分析:探索数据背后的隐藏模式与应用实例 基本概念聚类分类聚类算法的评价指标(1)内部指标轮廓系数(Silhouette Coefficient)DB指数(Davies-Bouldin Index)Dunn指数 (…...
基于深度Q网络(Deep Q-Network,DQN)的机器人路径规划,可以自定义地图,MATLAB代码
深度Q网络(Deep Q-Network,DQN)是一种结合了深度学习和Q学习的强化学习算法,由DeepMind在2015年提出。 1. 算法介绍 DQN算法通过使用深度神经网络来近似Q值函数,解决了传统Q-learning在处理具有大量状态和动作的复杂…...
Python-从文件中读取数据-Sat-Sun
10.1 文件读取数据可以整个文件读取,也可以逐行读取。 首先在保存有.py文件的文件夹里创建一个pi_digist.txt文件,文件内容是 3.14 9265 3589执行程序 file_reader.py with open(pi_digist.txt) as file_object: #接受文件名参数,在程序所…...
测试工程师的职业规划
测试人员在管理上的发展 基层测试管理者:测试组长 工作内容:安排小组工作,提升小组成员测试能力,负责重要的测试工作。 负责对象:版本,项目 中层测试管理者:测试经理 负责对象࿱…...
使用 Puppeteer 快速上手 Node.js 爬虫
使用 Puppeteer 库通过自动化浏览器来访问百度图片搜索,并在搜索结果中下载图片。代码分为两部分: 自动化浏览器任务:使用 Puppeteer 浏览百度图片搜索并获取图片 URL。图片下载:检查图片 URL 类型(base64 或 URL&…...
浏览器的跨域问题与解决方案
浏览器的跨域问题与解决方案 浏览器的跨域问题源于同源策略(Same-Origin Policy)这一安全机制。同源策略要求两个页面具有相同的协议、域名和端口号,才能相互访问资源和数据。这一机制旨在防止恶意网站执行跨站脚本攻击,从而保护…...
MyBatis一二级缓存的区别?
大家好,我是锋哥。今天分享关于【MyBatis一二级缓存的区别?】面试题。希望对大家有帮助; MyBatis一二级缓存的区别? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 MyBatis 的缓存机制分为 一级缓存 和 二级缓存&…...
[2024-12 CISCN 长城杯] Crypto
fffffhash 【也可以看这题,一样的:https://github.com/DownUnderCTF/Challenges_2023_Public/blob/main/crypto/fnv/solve/solution_joseph_LLL.sage】 题目描述: import os from Crypto.Util.number import * def giaogiao(hex_string):b…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
