pinctrl子系统学习笔记
一、背景
cpu的gpio引脚可以复用成多个功能,如可以配置成I2C或者普通GPIO模式。配置方式一般是通过写引脚复用的配置寄存器,但是不同芯片厂商配置寄存器格式内容各不相同,设置引脚复用无法做到通用且自由的配置,只能在启动初始化时候在soc驱动初始化时对每个引脚配置好。 linux 3.0之后内核中抽象出了pinctrl子系统,每个soc注册设置引脚复用的方法以及将soc的每个引脚可选的复用功能。
二、pinctrl实现
2.1 API
# 用于soc向pinctrl系统中注册设置引脚复用方法以及设置引脚复用状态
# driver_data用于soc驱动私有数据,一般用来保存pin 引脚的可选复用功能列表。
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,struct device *dev, void *driver_data)# 设置引脚复用状态,用来设置引脚复用状态
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)# 用于具体设备驱动(i2c等)关联pinctrl节点,以及设置默认复用模式,设备树解析时调用
int pinctrl_bind_pins(struct device *dev)
2.2 数据结构
数据结构关系图:
这里主要有几个对象:
- pin_group 和function : 引脚复用一般是多个引脚组成一个group,一起设置复用状态的。多个引脚复用为某个功能,成为function。
- pin_conf :设置引脚的上下拉电阻等电气参数
- pin_mux:设置引脚复用
pinctrl_desc
核心数据结构是pinctrl_desc,pinctrl的全局描述。
struct pinctrl_desc {const char *name;/*系统种有多少个pinctrl*/const struct pinctrl_pin_desc *pins;unsigned int npins;/*引脚控制的操作集,不同芯片方案不同*/const struct pinctrl_ops *pctlops;const struct pinmux_ops *pmxops;const struct pinconf_ops *confops;struct module *owner;
};
pinctrl_pin_desc
描述系统中的所有引脚,drv_data保存驱动私有数据。
struct pinctrl_pin_desc {unsigned number;const char *name;void *drv_data;
};
pinctrl_ops
回调函数,获取pin group的操作,以及解析dts。
struct pinctrl_ops {/*获取系统中有多少个pin groups*/int (*get_groups_count) (struct pinctrl_dev *pctldev);/*获取指定group(由索引selector指定)的名称,由select确认*/const char *(*get_group_name) (struct pinctrl_dev *pctldev,unsigned selector);/*获取指定group的所用pin信息*/int (*get_group_pins) (struct pinctrl_dev *pctldev,unsigned selector,const unsigned **pins,unsigned *num_pins);void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,unsigned offset);/*将对应驱动转换成pin map*/int (*dt_node_to_map) (struct pinctrl_dev *pctldev,struct device_node *np_config,struct pinctrl_map **map, unsigned *num_maps);void (*dt_free_map) (struct pinctrl_dev *pctldev,struct pinctrl_map *map, unsigned num_maps);
};
pinconf_ops
配置管脚状态:pinctrl也提供管脚状态如(上下拉、开漏等)的接口。
struct pinconf_ops {
#ifdef CONFIG_GENERIC_PINCONFbool is_generic;
#endif/*获取pin脚的当前状态*/int (*pin_config_get) (struct pinctrl_dev *pctldev,unsigned pin,unsigned long *config);/*设置pin脚状态*/int (*pin_config_set) (struct pinctrl_dev *pctldev,unsigned pin,unsigned long *configs,unsigned num_configs);/*获取或者设置指定pin group的配置项*/int (*pin_config_group_get) (struct pinctrl_dev *pctldev,unsigned selector,unsigned long *config);int (*pin_config_group_set) (struct pinctrl_dev *pctldev,unsigned selector,unsigned long *configs,unsigned num_configs);int (*pin_config_dbg_parse_modify) (struct pinctrl_dev *pctldev,const char *arg,unsigned long *config);void (*pin_config_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned offset);void (*pin_config_group_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned selector);void (*pin_config_config_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned long config);
};
pinmux_ops
设置或获取引脚复用情况,对应硬件是iomux。设置某个pin为某个function,通过set_mux设置function selecter。 一个group设置复用状态。
struct pinmux_ops {int (*request) (struct pinctrl_dev *pctldev, unsigned offset);int (*free) (struct pinctrl_dev *pctldev, unsigned offset);int (*get_functions_count) (struct pinctrl_dev *pctldev);const char *(*get_function_name) (struct pinctrl_dev *pctldev,unsigned selector);int (*get_function_groups) (struct pinctrl_dev *pctldev,unsigned selector,const char * const **groups,unsigned *num_groups);/*将指定的pin group(group_selector)设置为指定的function(func_selector)*/int (*set_mux) (struct pinctrl_dev *pctldev, unsigned func_selector,unsigned group_selector);int (*gpio_request_enable) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset);void (*gpio_disable_free) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset);int (*gpio_set_direction) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset,bool input);bool strict;
};
pinctrl_map
pinctrl_map 某个gpio具体的引脚配置和复用状态,由dts中定义,dt_node_to_map函数解析,和具体设备驱动关联。
struct pinctrl_map {//device的名称const char *dev_name;//pin state的名称const char *name;//该map的类型enum pinctrl_map_type type;//pin controller device的名字const char *ctrl_dev_name;union {struct pinctrl_map_mux mux;struct pinctrl_map_configs configs;} data;
};enum pinctrl_map_type {PIN_MAP_TYPE_INVALID,//不需要任何配置,仅仅为了表示state的存在PIN_MAP_TYPE_DUMMY_STATE,//配置管脚复用PIN_MAP_TYPE_MUX_GROUP,//配置pinPIN_MAP_TYPE_CONFIGS_PIN,//配置pin groupPIN_MAP_TYPE_CONFIGS_GROUP,
};struct pinctrl_map_mux {//group的名字const char *group;//function的名字const char *function;
};struct pinctrl_map_configs {//该pin或者pin group的名字const char *group_or_pin;//configuration数组unsigned long *configs;//配置项的个数unsigned num_configs;
};
三、实现流程
linux6.1.11为例,pinctrl系统融入内核设备树解析以及内核设备驱动模型中支持。以zynq为例从dts配置解析入手,了解pinctrl的工作原理。dts中主要关注:
1)pinctrl 子系统:描述系统多少引脚,每个引脚有多少复用情况。
2)I2C、GPIO、SPI等driver默认配置的pinctrl复用设置
《zynq-7000.dtsi》中,如列出i2C和uart的复用配置,其中只是选择了i2c0_10_grp这个pin_group,并且配置为i2c0的复用功能,具体引脚的引脚号等信息是在代码中定义的。
mux 和 conf的作用?
pinctrl0: pinctrl@700 {compatible = "xlnx,pinctrl-zynq";reg = <0x700 0x200>;syscon = <&slcr>;/*设置引脚的复用状态*/pinctrl_i2c0_default: i2c0-default {mux {/*pin_group*/groups = "i2c0_10_grp";/*复用功能为i2c0*/function = "i2c0";};conf {groups = "i2c0_10_grp";bias-pull-up; #上拉电阻slew-rate = <0>; #引脚转换速率io-standard = <1>;};};pinctrl_uart1_default: uart1-default {mux {groups = "uart1_10_grp";function = "uart1";};conf {groups = "uart1_10_grp";slew-rate = <0>;io-standard = <1>;};conf-rx {pins = "MIO49";bias-high-impedance;};conf-tx {pins = "MIO48";bias-disable;};};}
- 其他驱动如何关联pinctrl以及配置默认引脚复用?
对应驱动中的dts新增如下两个属性,在设备驱动device关联driver时,会解析如下字段,关联pinctrl驱动,并设置引脚复用状态,这里是选择pinctrl_i2c0_default。
&i2c0 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_i2c0_default>;
3.1 驱动注册
《linux-6.1.11\drivers\pinctrl\pinctrl-zynq.c》
构造一个pinctrl_desc结构,然后注册到pinctrl系统中。
static struct pinctrl_desc zynq_desc = {.name = "zynq_pinctrl",.pins = zynq_pins,.npins = ARRAY_SIZE(zynq_pins),.pctlops = &zynq_pctrl_ops,.pmxops = &zynq_pinmux_ops,.confops = &zynq_pinconf_ops,.num_custom_params = ARRAY_SIZE(zynq_dt_params),.custom_params = zynq_dt_params,
#ifdef CONFIG_DEBUG_FS.custom_conf_items = zynq_conf_items,
#endif.owner = THIS_MODULE,
};static int zynq_pinctrl_probe(struct platform_device *pdev){pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &zynq_desc, pctrl);
}
pin引脚定义:
/*定义系统中引脚*/
static const struct pinctrl_pin_desc zynq_pins[] = {PINCTRL_PIN(0, "MIO0"),PINCTRL_PIN(1, "MIO1"),...
}/*引脚可选复用功能*/
enum zynq_pinmux_functions {ZYNQ_PMUX_can0,ZYNQ_PMUX_can1,ZYNQ_PMUX_ethernet0,ZYNQ_PMUX_ethernet1,
}/* pin groups 组,每个引脚功能对应的pin脚定义*/
static const unsigned int ethernet0_0_pins[] = {16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26, 27};
static const unsigned int ethernet1_0_pins[] = {28, 29, 30, 31, 32, 33, 34, 35,36, 37, 38, 39};
static const unsigned int mdio0_0_pins[] = {52, 53};
static const unsigned int mdio1_0_pins[] = {52, 53};/*zynq维护的私有数据结构pin_group组信息,关联上述pin脚*/
static const struct zynq_pctrl_group zynq_pctrl_groups[] = {DEFINE_ZYNQ_PINCTRL_GRP(ethernet0_0),DEFINE_ZYNQ_PINCTRL_GRP(ethernet1_0),DEFINE_ZYNQ_PINCTRL_GRP(mdio0_0),DEFINE_ZYNQ_PINCTRL_GRP(mdio1_0),DEFINE_ZYNQ_PINCTRL_GRP(qspi0_0),DEFINE_ZYNQ_PINCTRL_GRP(qspi1_0),DEFINE_ZYNQ_PINCTRL_GRP(qspi_fbclk),DEFINE_ZYNQ_PINCTRL_GRP(qspi_cs1),DEFINE_ZYNQ_PINCTRL_GRP(spi0_0),
}
对应的ops实现这里不展开,具体写寄存器信息。
3.2 具体驱动关联pinctrl
具体i2c、spi等驱动初始化时如何设置引脚复用情况? dts中定义i2c选择pinctrl_i2c0_default的引脚复用。 pinctrl-names用于表示pinctrl_state,有init、default,init是在驱动初始化的状态,default是默认状态。 pinctrl-0 选择复用情况,这两个属性是pinctrl的标准属性,设备树解析框架中实现,在设备驱动匹配时关联。
&i2c0 {pinctrl-names = "default";pinctrl-0 = <&pinctrl_i2c0_default>;
时机:设备驱动匹配时关联,以及设置默认复用状态。
关键函数:pinctrl_bind_pins
《linux-6.1.11\drivers\base\dd.c》
__driver_probe_device -> really_probe -> pinctrl_bind_pins
- 解析dts,关联pinctrl_map
调用pinconf_generic_dt_node_to_map_all解析dts。关联pinctrl_i2c0_default的pinctrl_map。
pinctrl_bind_pins -> create_pinctrl -> pinctrl_dt_to_map -> pinconf_generic_dt_node_to_map_all
- 设置引脚复用
pinctrl_bind_pins -> pinctrl_select_state (选择default state) -> pinctrl_commit_state-> pinmux_disable_setting (禁用旧的复用)-> pinmux_enable_setting (设置新复用)-> pinconf_apply_setting (设置引脚状态)
/*** pinctrl_bind_pins() - called by the device core before probe* @dev: the device that is just about to probe*/
int pinctrl_bind_pins(struct device *dev)
{int ret;if (dev->of_node_reused)return 0;dev->pins = devm_kzalloc(dev, sizeof(*(dev->pins)), GFP_KERNEL);if (!dev->pins)return -ENOMEM;dev->pins->p = devm_pinctrl_get(dev);if (IS_ERR(dev->pins->p)) {dev_dbg(dev, "no pinctrl handle\n");ret = PTR_ERR(dev->pins->p);goto cleanup_alloc;}dev->pins->default_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_DEFAULT);if (IS_ERR(dev->pins->default_state)) {dev_dbg(dev, "no default pinctrl state\n");ret = 0;goto cleanup_get;}dev->pins->init_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_INIT);if (IS_ERR(dev->pins->init_state)) {/* Not supplying this state is perfectly legal */dev_dbg(dev, "no init pinctrl state\n");ret = pinctrl_select_state(dev->pins->p,dev->pins->default_state);} else {ret = pinctrl_select_state(dev->pins->p, dev->pins->init_state);}if (ret) {dev_dbg(dev, "failed to activate initial pinctrl state\n");goto cleanup_get;}#ifdef CONFIG_PM/** If power management is enabled, we also look for the optional* sleep and idle pin states, with semantics as defined in* <linux/pinctrl/pinctrl-state.h>*/dev->pins->sleep_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_SLEEP);if (IS_ERR(dev->pins->sleep_state))/* Not supplying this state is perfectly legal */dev_dbg(dev, "no sleep pinctrl state\n");dev->pins->idle_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_IDLE);if (IS_ERR(dev->pins->idle_state))/* Not supplying this state is perfectly legal */dev_dbg(dev, "no idle pinctrl state\n");
#endifreturn 0;/** If no pinctrl handle or default state was found for this device,* let's explicitly free the pin container in the device, there is* no point in keeping it around.*/
cleanup_get:devm_pinctrl_put(dev->pins->p);
cleanup_alloc:devm_kfree(dev, dev->pins);dev->pins = NULL;/* Return deferrals */if (ret == -EPROBE_DEFER)return ret;/* Return serious errors */if (ret == -EINVAL)return ret;/* We ignore errors like -ENOENT meaning no pinctrl state */return 0;
}
相关文章:

pinctrl子系统学习笔记
一、背景 cpu的gpio引脚可以复用成多个功能,如可以配置成I2C或者普通GPIO模式。配置方式一般是通过写引脚复用的配置寄存器,但是不同芯片厂商配置寄存器格式内容各不相同,设置引脚复用无法做到通用且自由的配置,只能在启动初始化…...

使用vue-element 的计数器inputNumber,传第三个参数
使用vue-element 的计数器inputNumber。 其中的change 事件中,默认自带两个参数,currentValue和oldValue,分别代表改变后的数和改变前的数, 如果想要传第三个参数, change"(currentValue, oldValue) > numCha…...

如何从0构建一个flask项目,直接上实操!!!
项目结构 首先,创建一个项目目录,结构如下: flask_app/ │ ├── app.py # Flask 应用代码 ├── static/ # 存放静态文件(如CSS、JS、图片等) │ └── style.css # 示例…...

Mongoose连接数据库操作实践
文章目录 介绍特点:Mongoose 使用:创建项目并安装:连接到 MongoDB:定义 Schema:创建模型并操作数据库:创建文档:查询文档:更新文档:删除文档:使用钩子&#x…...

centos 7.9 freeswitch1.10.9环境搭建
亲测版本centos 7.9系统–》 freeswitch1.10.9 一、下载插件 yum install -y git alsa-lib-devel autoconf automake bison broadvoice-devel bzip2 curl-devel libdb4-devel e2fsprogs-devel erlang flite-devel g722_1-devel gcc-c++ gdbm-devel gnutls-devel ilbc2...

Gitlab服务管理和仓库项目权限管理
Gitlab服务管理 gitlab-ctl start # 启动所有 gitlab 组件; gitlab-ctl stop # 停止所有 gitlab 组件; gitlab-ctl restart # 重启所有 gitlab 组件; gitlab-ctl status …...

LLMs之Llama-3:Llama-3.3的简介、安装和使用方法、案例应用之详细攻略
LLMs之Llama-3:Llama-3.3的简介、安装和使用方法、案例应用之详细攻略 目录 相关文章 LLMs之LLaMA:LLaMA的简介、安装和使用方法、案例应用之详细攻略 LLMs之LLaMA-2:LLaMA 2的简介(技术细节)、安装、使用方法(开源-免费用于研究和商业用途…...

OpenCV函数及其应用
1. 梯度处理的Sobel算子函数 功能 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导,用于计算图像亮度的空间梯度。 参数 src:输入图像。 dst:输出图像。 ddepth:输出图像的深度。 dxÿ…...

vulnhub靶场【DriftingBlues】之3
前言 靶机:DriftingBlues-3,IP地址192.168.1.60 攻击:kali,IP地址192.168.1.16 都采用虚拟机,网卡为桥接模式 主机发现 使用arp-scan -l或netdiscover -r 192.168.1.1/24 信息收集 使用nmap扫描端口 网站探测 访…...

文件上传—阿里云OSS对象存储
目录 一、OSS简介 二、OSS基本使用 1. 注册账号 2. 基本配置 (1) 开通OSS (2) 创建存储空间 (3) 修改权限 (4) 配置完成,上传一张图片,检验是否成功。 (5) 创建AccessKey 三、Java项目集成OSS 1. 导入依赖 2. Result.java代码: …...

mybatis-plus超详细讲解
mybatis-plus (简化代码神器) 地址:https://mp.baomidou.com/ 目录 mybatis-plus 简介 特性 支持数据库 参与贡献 快速指南 1、创建数据库 mybatis_plus 2、导入相关的依赖 3、创建对应的文件夹 4、编写配置文件 5、编写代码 …...

【Linux】--- 进程的概念
【Linux】--- 进程的概念 一、进程概念二、PCB1.什么是PCB2.什么是task_struct(重点!)3.task_struct包含内容 三、task_struct内容详解1.查看进程(1)通过系统目录查看(2)通过ps命令查看…...

Unity NTPComponent应用, 实现一个无后端高效获取网络时间的组件
无后端高效获取网络时间的组件 废话不多说,直接上源码m_NowSerivceTime 一个基于你发行游戏地区的时间偏移, 比如北京时区就是 8, 巴西就是-3,美国就是-5using Newtonsoft.Json; 如果这里报错, 就说明项目没有 NewtonsoftJson插件…...

go语言使用zlib压缩[]byte
在Go语言中,可以使用compress/flate和compress/zlib包来实现对[]byte数据的Zlib压缩。下面是一个简单的示例,展示如何使用这些包来压缩一个字节切片: go package main import ( "bytes" "compress/zlib" "fmt"…...

Windows 配置 Tomcat环境
Windows配置Tomcat 1. 介绍 Tomcat是一个开源的、轻量级的Java应用服务器,在Java Web开发领域应用广泛。以下是关于它的详细介绍: 一、基本概念与背景 定义:Tomcat是Apache软件基金会(Apache Software Foundation)下…...

【python从入门到精通】-- 第六战:列表和元组
🌈 个人主页:白子寰 🔥 分类专栏:重生之我在学Linux,C打怪之路,python从入门到精通,数据结构,C语言,C语言题集👈 希望得到您的订阅和支持~ 💡 坚持…...

Python | 数据可视化中常见的4种标注及示例
在Python的数据可视化中,标注(Annotation)技术是一种非常有用的工具,它可以帮助用户更准确地解释图表中的数据和模式。在本文中,将带您了解使用Python实现数据可视化时应该了解的4种标注。 常见的标注方式 文本标注箭…...

LearnOpenGL学习(高级OpenGL -> 高级GLSL,几何着色器,实例化)
完整代码见:zaizai77/Cherno-OpenGL: OpenGL 小白学习之路 高级GLSL 内建变量 顶点着色器 gl_PointSoze : float 输出变量,用于控制渲染 GL_POINTS 型图元时,点的大小。可用于粒子系统。将其设置为 gl_Position.z 时,可以使点…...

Scala学习记录
dao --------> 数据访问 mode ------> 模型 service ---->业务逻辑 Main -------> UI:用户直接操作,调用Service 改造UI层:...

vue使用pdfh5.js插件,显示pdf文件白屏
pdfh5,展示文件白屏,无报错 实现效果图解决方法(降版本)排查问题过程发现问题查找问题根源1、代码写错了?2、预览文件流的问题?3、pdfh5插件更新了,我的依赖包没更新?4、真相大白 彩蛋 实现效果图 解决方法…...

docker login 出错 Error response from daemon
在自己的Linux服务器尝试登陆docker出错 输入完用户密码之后错误如下: 解决方案 1.打开daemo文件: vim/etc/docker/daemon.json 2.常用的国内Docker 镜像源地址 网易云 Docker 镜像:http://hub-mirror.c.163.com 百度云 Docker 镜像&#x…...

Web 身份认证 --- Session和JWT Token
Web 身份认证 --- Session和JWT Token 方法一: 通过使用Session进行身份认证方法二: 通过JWT token进行身份认证什么是JWTJWT完整流程JWT攻防JWT 如何退出登录JWT的续签 方法一: 通过使用Session进行身份认证 用户第一次请求服务器的时候,服务器根据用户提交的相关信…...

UE5制作倒计时功能
设置画布和文本 文本绑定 格式化时间 转到事件图表,计算时间,时间结束后面的事件可以按自己需求写 进入关卡蓝图,添加倒计时UI...

Linux去除注释和空行
平时查看某些配置文件的时,我们会发现有很多注释(如:"#"开头的行),中间还有很多空行,看起来非常费劲,所以在这里总结下如何去除注释和空行的方法。 举例说明 这里选个简单点的文件&a…...

Elasticsearch 7.x入门学习-Spring Data Elasticsearch框架
1 Spring Data框架 Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持 map-reduce 框架和云计算数据服务。 Spring Data 可以极大的简化 JPA的写法,…...

网络层IP协议(TCP)
IP协议: 在了解IP协议之前,我们市面上看到的"路由器"其实就是工作在网络层。如下图: 那么网络层中的IP协议究竟是如何发送数据包的呢? IP报头: IP协议的报头是比较复杂的,作为程序猿只需要我们重…...

计算机视觉中的边缘检测算法
摘要: 本文全面深入地探讨了计算机视觉中的边缘检测算法。首先阐述了边缘检测的重要性及其在计算机视觉领域的基础地位,随后详细介绍了经典的边缘检测算法,包括基于梯度的 Sobel 算子算法、Canny 边缘检测算法等,深入剖析了它们的…...

js 常用扩展方法总结+应用
文章目录 js 常用扩展方法总结扩展方法应用选择大型项目 中扩展方法应用选择小型项目中 扩展应用 js 常用扩展方法总结 函数原型(prototype)扩展方法 介绍:在JavaScript中,通过修改函数的prototype属性可以为该函数创建的所有对象…...

数据结构---图(Graph)
图(Graph)是一种非常灵活且强大的数据结构,用于表示实体之间的复杂关系。在图结构中,数据由一组节点(或称为顶点)和连接这些节点的边组成。图可以用于表示社交网络、交通网络、网络路由等场景。 1. 基本概…...

前端解析超图的iserver xml
前端解析超图的iserver xml const res await axios.get(url)const xmlDom new DOMParser().parseFromString(res.data, text/xml);// 获取versionconst version xmlDom.getElementsByTagNameNS(*, ServiceTypeVersion)[0].textContent// 获取layerconst layerDom xmlDom.ge…...