samout llm解码 幻觉更低更稳定
这段代码定义了一个简单的对话生成系统,包括模型加载、词汇表加载、以及基于给定提示生成文本的功能。下面是对代码的解析:
-
load_model_and_voc(device="cpu"):- 该函数用于加载预训练的模型和词汇表(vocabulary)。它首先从文件
total_voc.pkl中加载词汇表,并创建一个名为SamOut的神经网络实例。 - 模型参数的数量被打印出来以供参考。
- 然后尝试加载指定路径下的预训练权重到模型中,并将模型移动到指定的设备(CPU 或 GPU)上。
- 最后设置模型为评估模式(
.eval()),并返回模型和词汇表。
- 该函数用于加载预训练的模型和词汇表(vocabulary)。它首先从文件
-
gen_token(voc, model, prompt, max_len, rp=1.2, temp=0.13, top_k=16, device="cpu"):- 这个函数负责根据提供的提示(prompt)生成新的文本序列。
- 它接受多个参数,包括词汇表、模型、初始提示、最大生成长度等。
- 函数内部实现了重复抑制、温度调整和top-k采样等技术来控制生成文本的质量。
- 使用softmax函数对模型输出进行处理,并通过多类别抽样选择下一个token。
- 如果生成了特殊的开始标记
<|sos|>,则停止生成过程。 - 生成的每个token会立即打印在屏幕上,形成即时响应的效果。
-
t_infre():- 此函数是交互式推理循环,允许用户输入文本,然后调用
gen_token函数来生成回应。 - 它是一个无限循环,持续等待用户的输入直到程序被手动终止。
- 此函数是交互式推理循环,允许用户输入文本,然后调用
-
if __name__ == '__main__':- 这部分代码确保当脚本作为主程序运行时,会执行某些特定的操作或测试。
- 注释掉的代码可能是之前用于数据预处理、训练或其他实验的部分。
- 最终调用了
t_infre()函数来启动交互式推理。
需要注意的是,这里使用的 SamOut 类并没有在给出的代码片段中定义,因此你可能需要确保这个类已经被正确实现并在其他地方导入。此外,为了使代码能够正常工作,你需要确保所有依赖库(如 PyTorch 和 pandas)已经安装,并且所有提及的数据文件和模型权重文件都存在于正确的路径下。
def load_model_and_voc(device="cpu"):voc = pd.read_pickle("total_voc.pkl")net = SamOut(len(voc["voc"]), 1024 + 512, 64, 16)# net = SamOut(len(voc["voc"]), 512, 32, 8)print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum([i.shape[0] for i in net.parameters() if len(i.shape) == 1]))# net.load_state_dict(torch.load("pretrain_768.pth", map_location=device))# net.load_state_dict(torch.load("pretrain_sft_single.pth", map_location=device))net.load_state_dict(torch.load("pretrain_sft_single_1024.pth", map_location=device))# net.load_state_dict(torch.load("pretrain.pth", map_location=device))net.to(device)net.eval()return net, vocdef gen_token(voc, model, prompt, max_len, rp=1.2, temp=0.13, top_k=16, device="cpu"):print("agent:", end="", flush=True)for _ in range(max_len):prompt_list = []for i in prompt:if i not in voc["voc"]:prompt_list += [voc["voc"].index(ii) for ii in voc["voc0"].get(i)]else:prompt_list.append(voc["voc"].index(i))out, _ = model(torch.Tensor([prompt_list]).to(device).long())out = out[:, -1:]# 重复抑制for token_id in enumerate(prompt_list):out[:, :, token_id] /= rpscore = torch.softmax(out, -1)[0, 0]score, score_index = torch.sort(score,descending=True)score=score.detach().numpy()score_sum = np.cumsum(score)score_index = score_index.detach().numpy()score1=score[score_sum<0.8]if score1.size==0:score=score[:1]else:score=score1score_index=score_index[:score.size]out = score / tempv= out[:min(top_k, score.size)]idx_next = torch.multinomial(torch.Tensor(v), num_samples=1, generator=None)if voc["voc"][score_index[idx_next.item()]] == "<|sos|>":breakprompt += [voc["voc"][score_index[idx_next.item()]]]print(prompt[-1], end="", flush=True)def t_infre():model, voc = load_model_and_voc()while True:text = input("user:")gen_token(voc, model, ["<|user|>"] + list("{}".format(text)) + ["<|agent|>"], 64)print()if __name__ == '__main__':# print(pd.read_pickle("loss916"))# gen_one_voc()# gen_voc()# for i in range(17,18):# gen_pre_data_align(i, 16)# train()# gen_sft_single_data_align()# train_single()# sft 推理 一本正经的胡说八道已练成t_infre()
相关文章:
samout llm解码 幻觉更低更稳定
这段代码定义了一个简单的对话生成系统,包括模型加载、词汇表加载、以及基于给定提示生成文本的功能。下面是对代码的解析: load_model_and_voc(device"cpu"): 该函数用于加载预训练的模型和词汇表(vocabulary)。它首先…...
单片机:实现多任务处理(附带源码)
单片机实现多任务处理 多任务处理是现代操作系统的重要特性,通常通过多线程、多进程的方式来并行执行多个任务。在嵌入式系统中,由于资源有限,通常通过时间片轮转或中断机制来模拟多任务处理。本项目将展示如何在8051单片机上实现简单的多任…...
负载均衡oj项目:介绍
目录 项目介绍 项目演示 项目介绍 负载均衡oj是一个基于bs模式的项目。 用户使用浏览器向oj模块提交代码,oj模块会在所有在线的后端主机中选择一个负载情况最低的主机,将用户的代码提交给该主机,该主机进行编译运行,将结果返回…...
剑指Offer 03比特位计数
只是记录 题目链接 题目链接 自己想出来的 第一种解法 思路简述 遍历[0,n]之间的数字,对于每一个数字按照二进制的方式展开,判断最低位置是否为1,若为1则1,反之不加,直到该数字等于0就停止。 public static int[] …...
多音轨视频使用FFmpeg删除不要音轨方法
近期给孩子找宫崎骏动画,但是有很多是多音轨视频但是默认的都是日语,电视上看没办法所以只能下载后删除音轨文件只保留中文。 方法分两步,先安装FFmpeg在转文件即可。 第一步FFmpeg安装 FFmpeg是一个开源项目,包含了处理视频的…...
elasticsearch 使用enrich processor填充数据
文章目录 使用 POST 请求手动插入用户数据1. 创建 Enrich Policy步骤 1.1: 创建 Enrich Policy步骤 1.2: 执行 Enrich Policy 2. 创建 Ingest Pipeline步骤 2.1: 创建 Ingest Pipeline步骤 2.2: 配置 Enrich Processor 参数 3. 使用 Ingest Pipeline步骤 3.1: 使用 Pipeline 进…...
VMProtect:软件保护与安全的全面解决方案
在当今数字化时代,软件的安全性和保密性愈发重要。VMProtect 作为一款备受瞩目的软件保护工具,因其强大的功能和广泛的应用而成为开发者保护软件的首选方案。 VMProtect 是一款新一代的软件保护实用程序,支持多个编译器平台,包括…...
Web 毕设篇-适合小白、初级入门练手的 Spring Boot Web 毕业设计项目:教室信息管理系统(前后端源码 + 数据库 sql 脚本)
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 1.0 项目介绍 开发工具:IDEA、VScode 服务器:Tomcat, JDK 17 项目构建:maven 数据库:mysql 8.0 系统用户前台和管理…...
第十二篇:linux下socket本地套接字通讯
使用套接字除了可以实现网络间不同主机间的通信外,还可以实现同一主机的不同进程间的通信,且建立的通信是双向的通信。socket进程通信与网络通信使用的是统一套接口,只是地址结构与某些参数不同。 用途 进程间通信:本地套…...
Spring Boot 2.1.7 数据源自动加载过程详解
在 Spring Boot 中,数据源的自动配置是框架中一个关键功能,本文将以 Spring Boot 2.1.7 版本为例,详细讲解在单数据源情况下数据源是如何自动加载的。我们通过源码分析,追踪整个加载流程。 1. 自动配置类的发现 Spring Boot 使用…...
【Vue.js 3.0】provide 、inject 函数详解
在 Vue 3 中,provide 和 inject 是用于跨组件层次结构进行依赖注入的一对 API。这些 API 主要用于祖先组件和后代组件之间的数据传递,尤其是当这些组件之间没有直接的父子关系时。 1. 示例 1.1 provide provide 函数用于在祖先组件中定义一个值&#…...
JVM(Java虚拟机)的虚拟机栈
JVM(Java虚拟机)的虚拟机栈是Java程序运行时的重要组件,以下是对其的详细解析: 一、概念与功能 概念:虚拟机栈也称为Java栈,是JVM为每个线程分配的一个私有的内存区域。每个线程在创建时都会创建一个虚拟…...
Elasticsearch02-安装7.x
零、文章目录 Elasticsearch02-安装7.x 1、Windows安装Elasticsearch (1)JDK安装 Elasticsearch是基于java开发的,所以需要安装JDK。我们安装的Elasticsearch版本是7.15,对应JDK至少1.8版本以上。也可以不安装jdk,…...
iPhone恢复技巧:如何从 iPhone 恢复丢失的照片
在计算机时代,我们依靠手机来捕捉和存储珍贵的回忆。但是,如果您不小心删除或丢失了手机上的照片怎么办?这真的很令人沮丧和烦恼,不是吗?好吧,如果您在 iPhone 上丢失了照片,您不必担心…...
vba批量化调整word的图和图表标题
vba代码 将图片进行居中操作 Sub ChangePictureFormate()Dim oPara As ParagraphDim oRange As RangeDim i As LongDim beforeIsPicture As BooleanbeforesIsPicture False 确保文档中至少有图片If ActiveDocument.InlineShapes.Count 0 ThenMsgBox "没有找到图片。&qu…...
【Flutter_Web】Flutter编译Web第二篇(webview篇):flutter_inappwebview如何改造方法,变成web之后数据如何交互
前言 欢迎来到第二篇文章,这也是第二个难题,就是原有的移动端本身一些页面H5的形式去呈现(webview),例如某些需要动态更换内容的页面,某些活动页面、支付页面,不仅仅做页面呈现,还包…...
【C语言的奥秘11】指针知识点总结(续)
目录 一、指针的运算 1、指针与整数相加减 2、指针-指针(地址-地址) 3、指针的关系运算 六、指针和数组 七、二级指针 八、指针数组 一、指针的运算 1、指针与整数相加减 看一下下面的代码: #include<stdio.h> int my_strlen(c…...
excel 列名是数据表 的字段名 ,单元格的值 是数据表对应字段的值,生成sql插入语句
在 Excel 中,按 Alt F11 打开 VBA 编辑器。在菜单栏选择 插入 -> 模块,在新模块中粘贴以下代码。 VBA 代码 Sub GenerateSQLInsertStatementsToFile()Dim ws As WorksheetDim lastRow As Long, lastCol As Long, i As Long, j As LongDim sql As S…...
AI Agent与MEME:技术与文化融合驱动Web3创新
AI Agent如何引领Web3新时代? 随着Web3与区块链技术的迅速发展,AI Agent作为人工智能与区块链的交汇点,正在逐步成为推动去中心化生态的重要力量。同时,MEME文化凭借其强大的社区驱动力和文化渗透力,在链上生态中扮演着…...
IO的入门
目录 1.IO概述1.1流的分类 2.字符流2.1 案例 1.IO概述 IO(Input/Output):输入和输出,指的是某个设备或环境进行数据的输入或者输出。例如:键盘的输入,再比如显示器就是输出设备,输出图像。 对于java来说输…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
