当前位置: 首页 > news >正文

LSTM长短期记忆网络

LSTM(长短期记忆网络)数学原理

LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),解决了标准RNN中存在的梯度消失(Vanishing Gradient) 和**梯度爆炸(Exploding Gradient)**问题。它由 Hochreiter 和 Schmidhuber 在1997年提出,广泛应用于处理序列数据,如自然语言处理、时间序列预测等。


1. LSTM 的基本结构

LSTM的核心是引入了一个记忆单元(Memory Cell)和三个主要的门控机制,分别是:

  • 遗忘门(Forget Gate):决定是否丢弃之前的记忆。
  • 输入门(Input Gate):决定当前输入的信息是否加入记忆单元。
  • 输出门(Output Gate):决定从记忆单元输出多少信息到下一时刻的隐藏状态。

通过这些门控机制,LSTM能够选择性地保留重要的信息,抑制不重要的信息,进而解决长期依赖问题。


2. 数学原理与公式

在时间步 t t t,LSTM 主要包含以下数学操作:

2.1 遗忘门(Forget Gate)

遗忘门决定记忆单元中哪些信息需要被保留,哪些信息需要被丢弃。它通过Sigmoid激活函数实现,输出范围在 ( [0,1] )。

f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)

  • f t f_t ft:遗忘门的输出向量(维度与记忆单元相同)
  • W f W_f Wf:遗忘门的权重矩阵
  • h t − 1 , x t h_{t-1}, x_t ht1,xt:将前一时刻的隐藏状态 h t − 1 h_{t-1} ht1 和当前输入 x t x_t xt 进行拼接
  • b f b_f bf:遗忘门的偏置向量
  • σ \sigma σ:Sigmoid激活函数,输出在 ( 0 , 1 ) (0, 1) (0,1) 之间

2.2 输入门(Input Gate)

输入门决定当前输入的信息如何更新到记忆单元中,包括两个步骤:

  1. 候选记忆单元:通过 ( \tanh ) 激活函数生成候选记忆。
  2. 输入门:通过 Sigmoid 决定候选记忆是否加入当前的记忆单元。

i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi)
C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC[ht1,xt]+bC)

  • i t i_t it:输入门的输出范围 ( 0 − 1 ) ( 0-1 ) (01)
  • C ~ t \tilde{C}_t C~t:候选记忆单元
  • W i , W C W_i, W_C Wi,WC:输入门和候选记忆的权重矩阵
  • b i , b C b_i, b_C bi,bC:偏置向量

2.3 更新记忆单元

当前时刻的记忆单元 ( C_t ) 是由以下两个部分组成的:

  1. 遗忘门决定丢弃多少旧记忆 C t − 1 C_{t-1} Ct1
  2. 输入门决定增加多少候选记忆 C ~ t \tilde{C}_t C~t

C t = f t ⊙ C t − 1 + i t ⊙ C ~ t C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t Ct=ftCt1+itC~t

  • C t C_t Ct:当前时刻的记忆单元
  • f t ⊙ C t − 1 f_t \odot C_{t-1} ftCt1:保留的旧记忆
  • i t ⊙ C ~ t i_t \odot \tilde{C}_t itC~t:添加的候选记忆
  • ⊙ \odot :逐元素乘法(Hadamard积)

2.4 输出门(Output Gate)

输出门决定从记忆单元中输出多少信息,并通过 ( \tanh ) 激活函数进一步处理:

o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo[ht1,xt]+bo)
h t = o t ⊙ tanh ⁡ ( C t ) h_t = o_t \odot \tanh(C_t) ht=ottanh(Ct)

  • o t o_t ot:输出门的输出范围 ( 0 − 1 ) ( 0-1 ) (01)
  • h t h_t ht:当前时刻的隐藏状态,也是LSTM的输出
  • W o W_o Wo:输出门的权重矩阵
  • b o b_o bo:输出门的偏置向量
  • tanh ⁡ ( C t ) \tanh(C_t) tanh(Ct):将记忆单元中的信息压缩到 [ − 1 , 1 ] [-1,1] [1,1]

3. LSTM 的工作流程总结

  1. 输入当前时刻的数据 x t x_t xt和前一时刻的隐藏状态 h t − 1 h_{t-1} ht1、记忆单元 C t − 1 C_{t-1} Ct1
  2. 遗忘门:决定丢弃多少旧记忆。
  3. 输入门:决定当前输入的信息如何加入记忆单元。
  4. 更新记忆单元 C t C_t Ct:根据遗忘门和输入门进行更新。
  5. 输出门:决定当前时刻的隐藏状态 h t h_t ht 输出多少信息。
  6. 传播到下一时刻 h t h_t ht C t C_t Ct被传递给下一时间步。

4. 解决梯度消失与爆炸问题

LSTM 解决了传统 RNN 的梯度消失问题,主要依靠 记忆单元门控机制

  1. 记忆单元 C t C_t Ct:通过逐元素加法(避免梯度多次相乘),使得记忆信息能够长期保存。
  2. 门控机制:通过遗忘门和输入门的动态调整,能够控制信息的流动,保留有用的信息,抑制无关的信息。
  3. 激活函数:在遗忘门、输入门和输出门中使用 Sigmoid 函数,保证输出在 ( 0 , 1 ) (0,1) (0,1) 之间,防止梯度爆炸。

5. LSTM 与标准 RNN 的对比

特点标准RNNLSTM
结构简单隐藏层引入记忆单元与门控机制
梯度问题容易梯度消失或爆炸能有效缓解梯度消失/爆炸问题
长时依赖问题无法捕捉长期依赖能有效学习长时依赖
计算复杂度相对较高

6. LSTM 的应用场景

  1. 自然语言处理(NLP):文本分类、语言建模、机器翻译等。
  2. 时间序列预测:股票价格、天气预测等。
  3. 语音识别:连续语音识别任务。
  4. 视频分析:视频帧之间的序列建模。
  5. 生成任务:文本生成、音乐生成等。

7. 小结

LSTM通过引入记忆单元门控机制,解决了标准RNN在长时依赖任务中的梯度消失问题。其核心包括遗忘门输入门输出门,动态控制信息的流动与保留,从而实现高效的序列建模。


如果你喜欢这篇文章,请点赞、评论和收藏!😊

相关文章:

LSTM长短期记忆网络

LSTM(长短期记忆网络)数学原理 LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),解决了标准RNN中存在的梯度消失(Vanishing Gradient) 和**梯度爆炸&#x…...

基于前端技术UniApp和后端技术Node.js的电影购票系统

文章目录 摘要Abstruct第一章 绪论1.1 研究背景与意义1.2 国内外研究现状 第二章 需求分析2.1 功能需求分析2.2 非功能性需求分析 第二章系统设计3.1 系统架构设计3.1.1 总体架构3.1.2 技术选型 3.2 功能架构 第四章 系统实现4.1 用户端系统实现4.1.1 用户认证模块实现4.1.2 电…...

数据结构与算法:稀疏数组

前言 此文以整型元素的二维数组为例,阐述稀疏数组的思想。其他类型或许有更适合压缩算法或者其他结构的稀疏数组,此文暂不扩展。 稀疏数组的定义 在一个二维数据数组里,由于大量的元素的值为同一个值,比如 0或者其他已知的默认值…...

Meta重磅发布Llama 3.3 70B:开源AI模型的新里程碑

在人工智能领域,Meta的最新动作再次引起了全球的关注。今天,我们见证了Meta发布的Llama 3.3 70B模型,这是一个开源的人工智能模型,它不仅令人印象深刻,而且在性能上达到了一个新的高度。 一,技术突破&#…...

VSCode中的Black Formatter没有生效的解决办法

说明 如果正常按照配置进行的话,理论上是可以生效的。 "[python]": {"editor.defaultFormatter": "ms-python.black-formatter","editor.formatOnSave": true }但我在一种情况下发现不能生效,应为其本身的bug…...

【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题

目录 背包问题简介 问题描述 输入: 输出: 动态规划解法 动态规划状态转移 代码实现 代码解释 动态规划的时间复杂度 例子解析 输出: 总结 作者我蓝桥杯:2023第十四届蓝桥杯国赛C/C大学B组一等奖,所以请听我…...

Odoo:免费开源ERP的AI技术赋能出海企业电子商务应用介绍

概述 伴随电子商务的持续演进,客户对于便利性、速度以及个性化服务的期许急剧攀升。企业务必要探寻创新之途径,以强化自身运营,并优化购物体验。达成此目标的最为行之有效的方式之一,便是将 AI 呼叫助手融入您的电子商务平台。我们…...

微信小程序苹果手机自带的数字键盘老是弹出收起,影响用户体验,100%解决

文章目录 1、index.wxml2、index.js3、index.wxss1、index.wxml <!--index.wxml--> <view class="container"><view class="code-input-container"><view class="code-input-boxes"><!-- <block wx:for="{{…...

sql中case when若条件重复 执行的顺序

sql case when若条件重复 执行的顺序 在 SQL 中&#xff0c;如果你在 CASE 表达式中定义了多个 WHEN 子句&#xff0c;并且这些条件有重叠&#xff0c;那么 CASE 表达式的执行顺序遵循以下规则&#xff1a; &#xff08;1&#xff09;从上到下&#xff1a;SQL 引擎会按照 CASE …...

压力测试Jmeter简介

前提条件&#xff1a;要安装JDK 若不需要了解&#xff0c;请直接定位到左侧目录的安装环节。 1.引言 在现代软件开发中&#xff0c;性能和稳定性是衡量系统质量的重要指标。为了确保应用程序在高负载情况下仍能正常运行&#xff0c;压力测试变得尤为重要。Apache JMeter 是一…...

cesium 与 threejs 对比

Cesium 和 Three.js 都是用于在 Web 浏览器中创建和渲染 3D 图形的强大 JavaScript 库&#xff0c;但它们有显著的不同之处&#xff0c;主要体现在应用领域、功能集和使用场景上。 以下是两者之间的对比&#xff1a; 1. 应用场景 Three.js: 适用于广泛的 3D 图形应用&#xff…...

探索QScreen的信号与槽:动态响应屏幕变化

在处理屏幕显示和多显示器环境时&#xff0c;QScreen 提供了一些特有的信号&#xff0c;这些信号可以在屏幕的变化时通知应用程序&#xff0c;帮助我们动态地适配和响应显示设备的变化。今天&#xff0c;我们将深入探讨如何使用 QScreen 的信号与槽&#xff0c;并展示适用的使用…...

vLLM项目加入PyTorch生态系统,引领LLM推理新纪元

近日&#xff0c;vLLM项目宣布正式成为PyTorch生态系统的一部分&#xff0c;标志着该项目与PyTorch的合作进入了一个全新的阶段。本文将从以下几个方面进行介绍&#xff0c;特别提醒&#xff1a;安装方案在第四个部分&#xff0c;可选择性阅读。 vLLM项目概述 vLLM的成就与实际…...

索引-介绍结构语法

一.概述&#xff1a; 1.当给某个字段创建索引后&#xff0c;就会把字段生成二叉排序树进行查找&#xff0c;大大增加了查找效率&#xff0c;比不创建索引时用的全表扫描好得多。 2.二叉排序树&#xff1a;小的在左边&#xff0c;大的在右边(查找和存放都遵循这个原则)。 3.注…...

SpringBoot整合JDBC

讲到这里&#xff0c;基本上我们就可以使用SpringBoot来开发Web项目视图显示和业务逻辑代码&#xff0c;但是要做一个完成案例&#xff0c;我们还差一点点&#xff0c;就是怎么访问数据库&#xff0c;获取数据&#xff0c;接下来我们就看怎么用SpringBoot整合我们前面已经讲过的…...

XXE靶场

XXE-lab 靶场 靶场网址&#xff1a;http://172.16.0.87/ 第一步我们看到网站有登录框我们试着用 bp 去抓一下包 将抓到的包发到重放器中 然后我们构建palody <!DOCTYPE foo [ <!ENTITY xxe SYSTEM "php://filter/readconvert.base64-encode/resourceC:/flag/fla…...

Elasticsearch:使用 Open Crawler 和 semantic text 进行语义搜索

作者&#xff1a;来自 Elastic Jeff Vestal 了解如何使用开放爬虫与 semantic text 字段结合来轻松抓取网站并使其可进行语义搜索。 Elastic Open Crawler 演练 我们在这里要做什么&#xff1f; Elastic Open Crawler 是 Elastic 托管爬虫的后继者。 Semantic text 是 Elasti…...

Facebook的隐私保护政策:用户数据如何在平台上被管理?

在当今数字化世界&#xff0c;社交平台如何管理用户数据并保护隐私成为了一个热点话题。作为全球最大的社交网络&#xff0c;Facebook&#xff08;现Meta&#xff09;在数据隐私方面的政策备受关注。本文将简要介绍Facebook的隐私保护措施&#xff0c;以及用户数据如何在平台上…...

【ETCD】【源码阅读】深入解析 EtcdServer.applySnapshot方法

今天我们来一步步分析ETCD中applySnapshot函数 一、函数完整代码 函数的完整代码如下&#xff1a; func (s *EtcdServer) applySnapshot(ep *etcdProgress, apply *apply) {if raft.IsEmptySnap(apply.snapshot) {return}applySnapshotInProgress.Inc()lg : s.Logger()lg.In…...

‌HBase是什么,‌HBase介绍

‌官方网站&#xff1a;Apache HBase – Apache HBase Home HBase是一个分布式的、面向列的NoSQL数据库&#xff0c;主要用于存储和处理海量数据。‌它起源于Google的​​​​​​​BigTable论文&#xff0c;是Apache Hadoop项目的子项目。HBase设计用于高可靠性、高性能和可伸…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...