kafka的处理的一些问题 消费延迟
kafka的处理的一些问题
- 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大
- 在Kafka的Leader副本宕机时
消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大

比如我们这个kakfa集群一共有3个Broker节点
TOp1有5个分区,P0、P1、P2、P3、P4,这些分区分布在3个不同Broker节点上,而我们创建了包含两个消费者的消费者组。
消费者1同时消费P0、P1和P4分区的数据。
消费者2消费P2和P3分区的数据
看到消费延迟,大家想去就是增加消费者数量和分区数量,让我消费者数量增加到和Partition的数量一样多,这样每个消费者就可以仅仅消费一个分区的数据,可以达到消费能力1最大化 。
了解消费者背后的执行原理。该如何优化消费者消费数据的吞吐量。

消费者在调用poll()方法到远端的Broker节点拉去数据时。优先从nextInLineFetch中获取数据,这个nextInLineFetch就是数据接收缓冲区,
如果数据接收缓冲区中没有待消费的数据,这个时候才会调用SendFetches方法,到Broker端拉去数据,
kafka是向响应的Broker节点发送拉取数据的网络请求,我们都知道网路请求对于内存请求是比较慢的,因此这些拉取数据的网络请求是由Broker端异步执行的,异步执行拉取数据请求,就必须通过future监听数据是否已经准备好,当数据准备好之后,会异步将数放到数据接收缓存completedFetches中,

这是因为IO请求比较耗时,所以尽量一次批量拉取更多的数据放到缓存中,这样就可以降低发起网络的IO次数,进而提升消费能力,现在缓冲区completedFetches中已经有数据了,就会把completedFetches中队头的数据解析到nextInLineFetch中

解析成消费者可以消费的数据格式,然后清除completedFetches中队头的元素。

随后如果有消费调用poll()方法拉取数,就会优先从nextInLineFetch中获取数据,注意,消费者客户端每次获取的数据量是由参数 max.poll.records控制的,默认值是500。 相当于每次从nextInLineFetch获取500条数据并返回给消费者。

当消费者消费完500条数据之后,会再次调用poll()方法,

再拉取500条数据 ,当消费者把nextlnLineFetch缓存的数据都消费完之后,相当于再调用poll()方式时,nextInLineFetch已经咩有待消费的数据了,这个时候,就会把completedFetch的新的队头元素解析解析成nextInLineFetch。可以适当的将该参数增加到16KB或者32KB
而参数fetch.max.bytes标识每次poll操作,从Broker端最多拉取数据量,默认值时50MB,如果我们内存资源充足,建议增大fetch.max.bytes增加到200MB以上.参数max.partition.fetch.bytes的默认值是1MB。表示每次poll返回的,每个Broker节点上每个分区的最大字节数。因此我们再回头看这个例子。
那么每次从Broker-102上最多能拉取到的数据也就是1MB。数据量未免太小了,有的时候刚消费完1MB,就得再次经过一次网络IO拉取下一批数据,这可能是造成消费延迟的主要原因。大家可以根据自己的Topic的实际分区数,来合理设置每个分区每次拉取数据的大小,因此建议可以将每个分区每次拉取数据的大小设置成10MB以上。 max.partition.fetch.bytes增加到10MB以上
但有的时候只是提高每个分区每次最大拉取到的数量也是不够的,因为每个Broker最多返回的最大字节数由参数fetch.max.bytes控制,这个参数的默认值是50MB,有时候也可以适当的提升这个参数的默认值,比如增加到200MB。
这样就能再本地尽量缓存更多的数据,以提升消费者消费数据的能力,降低消费延迟,主要适用于内存充足,你消费能力不足的场景,
消费客户端根本不能修改啦这个参数,因为设置了静态的

在Kafka的Leader副本宕机时

相关文章:
kafka的处理的一些问题 消费延迟
kafka的处理的一些问题 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大在Kafka的Leader副本宕机时 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大 比如我们这个kakfa集群一共有3个Broker节点 TOp1有5个分区…...
旅游创业,千益畅行,开启新的旅游模式!
在当今旅游市场蓬勃发展的时代,旅游卡项目如一颗新星闪耀登场,而千益畅行旅游卡服务更是其中的佼佼者,为广大旅游爱好者带来了全新的旅游体验与机遇。 一、旅游卡项目是如何运作的呢? 千益畅行旅游卡服务的运作模式犹如一部精心…...
集成自然语言理解服务,让应用 “听得懂人话”
如今,应用程序智能化已成趋势,开发者想要实现智能化,那么首先需要赋予应用理解自然语言的能力,使其能够准确地听懂人话,进而响应用户需求,并提供一系列智能化服务。比如用户语音控制应用程序帮忙订票&#…...
利用notepad++删除特定关键字所在的行
1、按组合键Ctrl H,查找模式选择 ‘正则表达式’,不选 ‘.匹配新行’ 2、查找目标输入 : ^.*关键字.*\r\n (不保留空行) ^.*关键字.*$ (保留空行)3、替换为:(空) 配置界面参考下图: …...
[HNOI2002] 营业额统计 STL - set集合
文章目录 [HNOI2002] 营业额统计题目描述样例输入 #1样例输出 #1 提示题解相关知识点set [HNOI2002] 营业额统计 STL - set解题 题目描述 Tiger 最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况。 Tiger 拿出…...
fastAPI接口(普通流式响应和大模型流式响应)
1. 流式输出和非流失输出: 大模型的流式输出(Streaming Output)和非流式输出(Non-streaming Output)是指在生成文本或其他输出时,如何将结果返回给用户或下游系统。 流式输出 (Streaming Output)…...
Linux系统安装node.js
一、node官网下载想要的node版本 https://nodejs.org/en/download/package-manager 二、将tar.xz文件解压 tar -xvf node-vxxx.tar.xz 三、改文件夹的名字,改成nodejs mv node-xxx nodejs 四、复制nodejs文件,并上传到linux 服务器 /usr/local 目录下…...
《解决两道有趣的编程问题:交替数字和与简单回文》
在编程的世界里,算法和逻辑的挑战无处不在。今天,我们将用 Python 来解决两道有趣的编程问题,分别是计算交替数字和以及生成简单回文。 一、交替数字和(Alternating Sum of Numbers) 1. 问题描述 给定一系列整数&am…...
2412d,d的8月会议
原文 总结 替换D的逃逸分析 Rikki说,他一个月前曾与Dennis讨论过简化D的逃逸分析,但没有结果.在BeerConf上,他再次提起了它,Dennis说他一直在考虑它. Rikki也与Walter谈过这件事,Walter曾说过DIP1000并没有完全如期工作,且有点太复杂了. 因此,Rikki想讨论按D逃逸分析方法替…...
WEB自动化测试(selenium工具)框架、面试题
一、什么是web自动化测试 让程序员代替人为去验证web项目功能的过程 二、什么web项目适合自动化测试 1)需求变动不频繁 测试脚本的稳定性决定了自动化测试的维护成本。如果软件需求变动过于频繁,测试人员需要根据变动的需求来更新测试用例以及相关的测试脚本&…...
前端自动化部署之ssh2和ssh2-sftp-client
ssh2-sftp-client 本身是一个专门用于处理 SFTP文件操作的库,它不直接提供执行远程命令的功能。但是可以通过它的底层依赖库 ssh2 实现执行命令的功能。 以下是实现方法和示例代码: 方法一:使用 ssh2 执行远程命令 ssh2 是 ssh2-sftp-client…...
python pandas 优化内存占用(一)
最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更…...
FutureCompletableFuture实战
1. Callable&Future&FutureTask介绍 直接继承Thread或者实现Runnable接口都可以创建线程,但是这两种方法都有一个问题就是:没有返回值,也就是不能获取执行完的结果。因此java1.5就提供了Callable接口来实现这一场景,而Fu…...
Loki 微服务模式组件介绍
目录 一、简介 二、架构图 三、组件介绍 Distributor(分发器) Ingester(存储器) Querier(查询器) Query Frontend(查询前端) Index Gateway(索引网关)…...
peerDependencies对等依赖
在 package.json 中平时常用的有字段有 dependencies 和 devDependencies,但 peerDependencies 平时都没咋看到过,今天具体讲讲 peerDependencies 的作用 一、什么是对等依赖 peerDependencies 可以翻译为“对等依赖”或“同行依赖”。这个术语在 npm …...
贪心算法 part01
class Solution { public:int maxSubArray(vector<int>& nums) {int result INT32_MIN;int count 0;for (int i 0; i < nums.size(); i) {count nums[i];if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置ÿ…...
java开发入门学习二 - 变量
目录 一 关键字 编辑 二 标识符 三 变量 变量数据类型 变量注意点 四 数据类型 前置知识 - 计算机存储单位 整型数据类型 浮点数据类型 字符数据类型 布尔数据类型 五 数据类型间的计算 基本数据类型之间的计算 自动类型提升 强制类型转换 引用数据类型 Sti…...
Qt Q_ENUM enum 转 QString 枚举字符串互转; C++模板应用
Part1: Summary 项目中我们常用到命名,使用 enum 转成 string ,方便简洁;Qt给我们提供了一个很方便的功能 Q_ENUM,可以实现枚举字符串互转; Q_ENUM宏将枚举注册到元对象系统中; QMetaEnum::fromType获取枚…...
0004.基于springboot+elementui的在线考试系统
适合初学同学练手项目,部署简单,代码简洁清晰; 愿世界和平再无bug 一、系统架构 前端:vue| elementui 后端:springboot | mybatis-plus 环境:jdk1.8 | mysql | maven 二、登录角色 1.管理员 2.老师 …...
基于 iAP2 协议 的指令协议,用于对安防设备的 MCU 进行操作
协议设计目标 1. 安全性:通过 iAP2 协议与 MCU 设备进行安全通信。 2. 通用性:支持对安防设备的常见功能进行操作,如状态查询、设备控制、参数配置等。 3. 高效性:数据结构简洁清晰,易于解析和扩展。 4. 扩展性&#x…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
标注工具核心架构分析——主窗口的图像显示
🏗️ 标注工具核心架构分析 📋 系统概述 主要有两个核心类,采用经典的 Scene-View 架构模式: 🎯 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 🔧 关键函数&…...
【大厂机试题解法笔记】矩阵匹配
题目 从一个 N * M(N ≤ M)的矩阵中选出 N 个数,任意两个数字不能在同一行或同一列,求选出来的 N 个数中第 K 大的数字的最小值是多少。 输入描述 输入矩阵要求:1 ≤ K ≤ N ≤ M ≤ 150 输入格式 N M K N*M矩阵 输…...
