kafka的处理的一些问题 消费延迟
kafka的处理的一些问题
- 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大
- 在Kafka的Leader副本宕机时
消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大
比如我们这个kakfa集群一共有3个Broker节点
TOp1有5个分区,P0、P1、P2、P3、P4,这些分区分布在3个不同Broker节点上,而我们创建了包含两个消费者的消费者组。
消费者1同时消费P0、P1和P4分区的数据。
消费者2消费P2和P3分区的数据
看到消费延迟,大家想去就是增加消费者数量和分区数量,让我消费者数量增加到和Partition的数量一样多,这样每个消费者就可以仅仅消费一个分区的数据,可以达到消费能力1最大化 。
了解消费者背后的执行原理。该如何优化消费者消费数据的吞吐量。
消费者在调用poll()方法到远端的Broker节点拉去数据时。优先从nextInLineFetch中获取数据,这个nextInLineFetch就是数据接收缓冲区,
如果数据接收缓冲区中没有待消费的数据,这个时候才会调用SendFetches方法,到Broker端拉去数据,
kafka是向响应的Broker节点发送拉取数据的网络请求,我们都知道网路请求对于内存请求是比较慢的,因此这些拉取数据的网络请求是由Broker端异步执行的,异步执行拉取数据请求,就必须通过future监听数据是否已经准备好,当数据准备好之后,会异步将数放到数据接收缓存completedFetches中,
这是因为IO请求比较耗时,所以尽量一次批量拉取更多的数据放到缓存中,这样就可以降低发起网络的IO次数,进而提升消费能力,现在缓冲区completedFetches中已经有数据了,就会把completedFetches中队头的数据解析到nextInLineFetch中
解析成消费者可以消费的数据格式,然后清除completedFetches中队头的元素。
随后如果有消费调用poll()方法拉取数,就会优先从nextInLineFetch中获取数据,注意,消费者客户端每次获取的数据量是由参数 max.poll.records控制的,默认值是500。 相当于每次从nextInLineFetch获取500条数据并返回给消费者。
当消费者消费完500条数据之后,会再次调用poll()方法,
再拉取500条数据 ,当消费者把nextlnLineFetch缓存的数据都消费完之后,相当于再调用poll()方式时,nextInLineFetch已经咩有待消费的数据了,这个时候,就会把completedFetch的新的队头元素解析解析成nextInLineFetch。可以适当的将该参数增加到16KB或者32KB
而参数fetch.max.bytes标识每次poll操作,从Broker端最多拉取数据量,默认值时50MB,如果我们内存资源充足,建议增大fetch.max.bytes
增加到200MB以上.参数max.partition.fetch.bytes的默认值是1MB。表示每次poll返回的,每个Broker节点上每个分区的最大字节数。因此我们再回头看这个例子。
那么每次从Broker-102上最多能拉取到的数据也就是1MB。数据量未免太小了,有的时候刚消费完1MB,就得再次经过一次网络IO拉取下一批数据,这可能是造成消费延迟的主要原因。大家可以根据自己的Topic的实际分区数,来合理设置每个分区每次拉取数据的大小,因此建议可以将每个分区每次拉取数据的大小设置成10MB以上。 max.partition.fetch.bytes增加到10MB以上
但有的时候只是提高每个分区每次最大拉取到的数量也是不够的,因为每个Broker最多返回的最大字节数由参数fetch.max.bytes控制,这个参数的默认值是50MB,有时候也可以适当的提升这个参数的默认值,比如增加到200MB。
这样就能再本地尽量缓存更多的数据,以提升消费者消费数据的能力,降低消费延迟,主要适用于内存充足,你消费能力不足的场景,
消费客户端根本不能修改啦这个参数,因为设置了静态的
在Kafka的Leader副本宕机时
相关文章:

kafka的处理的一些问题 消费延迟
kafka的处理的一些问题 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大在Kafka的Leader副本宕机时 消费者客户端不但没有背压而且内存充足,但产生的消费延迟越来越大 比如我们这个kakfa集群一共有3个Broker节点 TOp1有5个分区…...
旅游创业,千益畅行,开启新的旅游模式!
在当今旅游市场蓬勃发展的时代,旅游卡项目如一颗新星闪耀登场,而千益畅行旅游卡服务更是其中的佼佼者,为广大旅游爱好者带来了全新的旅游体验与机遇。 一、旅游卡项目是如何运作的呢? 千益畅行旅游卡服务的运作模式犹如一部精心…...
集成自然语言理解服务,让应用 “听得懂人话”
如今,应用程序智能化已成趋势,开发者想要实现智能化,那么首先需要赋予应用理解自然语言的能力,使其能够准确地听懂人话,进而响应用户需求,并提供一系列智能化服务。比如用户语音控制应用程序帮忙订票&#…...

利用notepad++删除特定关键字所在的行
1、按组合键Ctrl H,查找模式选择 ‘正则表达式’,不选 ‘.匹配新行’ 2、查找目标输入 : ^.*关键字.*\r\n (不保留空行) ^.*关键字.*$ (保留空行)3、替换为:(空) 配置界面参考下图: …...
[HNOI2002] 营业额统计 STL - set集合
文章目录 [HNOI2002] 营业额统计题目描述样例输入 #1样例输出 #1 提示题解相关知识点set [HNOI2002] 营业额统计 STL - set解题 题目描述 Tiger 最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况。 Tiger 拿出…...
fastAPI接口(普通流式响应和大模型流式响应)
1. 流式输出和非流失输出: 大模型的流式输出(Streaming Output)和非流式输出(Non-streaming Output)是指在生成文本或其他输出时,如何将结果返回给用户或下游系统。 流式输出 (Streaming Output)…...
Linux系统安装node.js
一、node官网下载想要的node版本 https://nodejs.org/en/download/package-manager 二、将tar.xz文件解压 tar -xvf node-vxxx.tar.xz 三、改文件夹的名字,改成nodejs mv node-xxx nodejs 四、复制nodejs文件,并上传到linux 服务器 /usr/local 目录下…...
《解决两道有趣的编程问题:交替数字和与简单回文》
在编程的世界里,算法和逻辑的挑战无处不在。今天,我们将用 Python 来解决两道有趣的编程问题,分别是计算交替数字和以及生成简单回文。 一、交替数字和(Alternating Sum of Numbers) 1. 问题描述 给定一系列整数&am…...
2412d,d的8月会议
原文 总结 替换D的逃逸分析 Rikki说,他一个月前曾与Dennis讨论过简化D的逃逸分析,但没有结果.在BeerConf上,他再次提起了它,Dennis说他一直在考虑它. Rikki也与Walter谈过这件事,Walter曾说过DIP1000并没有完全如期工作,且有点太复杂了. 因此,Rikki想讨论按D逃逸分析方法替…...

WEB自动化测试(selenium工具)框架、面试题
一、什么是web自动化测试 让程序员代替人为去验证web项目功能的过程 二、什么web项目适合自动化测试 1)需求变动不频繁 测试脚本的稳定性决定了自动化测试的维护成本。如果软件需求变动过于频繁,测试人员需要根据变动的需求来更新测试用例以及相关的测试脚本&…...
前端自动化部署之ssh2和ssh2-sftp-client
ssh2-sftp-client 本身是一个专门用于处理 SFTP文件操作的库,它不直接提供执行远程命令的功能。但是可以通过它的底层依赖库 ssh2 实现执行命令的功能。 以下是实现方法和示例代码: 方法一:使用 ssh2 执行远程命令 ssh2 是 ssh2-sftp-client…...
python pandas 优化内存占用(一)
最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更…...

FutureCompletableFuture实战
1. Callable&Future&FutureTask介绍 直接继承Thread或者实现Runnable接口都可以创建线程,但是这两种方法都有一个问题就是:没有返回值,也就是不能获取执行完的结果。因此java1.5就提供了Callable接口来实现这一场景,而Fu…...

Loki 微服务模式组件介绍
目录 一、简介 二、架构图 三、组件介绍 Distributor(分发器) Ingester(存储器) Querier(查询器) Query Frontend(查询前端) Index Gateway(索引网关)…...
peerDependencies对等依赖
在 package.json 中平时常用的有字段有 dependencies 和 devDependencies,但 peerDependencies 平时都没咋看到过,今天具体讲讲 peerDependencies 的作用 一、什么是对等依赖 peerDependencies 可以翻译为“对等依赖”或“同行依赖”。这个术语在 npm …...

贪心算法 part01
class Solution { public:int maxSubArray(vector<int>& nums) {int result INT32_MIN;int count 0;for (int i 0; i < nums.size(); i) {count nums[i];if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置ÿ…...

java开发入门学习二 - 变量
目录 一 关键字 编辑 二 标识符 三 变量 变量数据类型 变量注意点 四 数据类型 前置知识 - 计算机存储单位 整型数据类型 浮点数据类型 字符数据类型 布尔数据类型 五 数据类型间的计算 基本数据类型之间的计算 自动类型提升 强制类型转换 引用数据类型 Sti…...
Qt Q_ENUM enum 转 QString 枚举字符串互转; C++模板应用
Part1: Summary 项目中我们常用到命名,使用 enum 转成 string ,方便简洁;Qt给我们提供了一个很方便的功能 Q_ENUM,可以实现枚举字符串互转; Q_ENUM宏将枚举注册到元对象系统中; QMetaEnum::fromType获取枚…...

0004.基于springboot+elementui的在线考试系统
适合初学同学练手项目,部署简单,代码简洁清晰; 愿世界和平再无bug 一、系统架构 前端:vue| elementui 后端:springboot | mybatis-plus 环境:jdk1.8 | mysql | maven 二、登录角色 1.管理员 2.老师 …...

基于 iAP2 协议 的指令协议,用于对安防设备的 MCU 进行操作
协议设计目标 1. 安全性:通过 iAP2 协议与 MCU 设备进行安全通信。 2. 通用性:支持对安防设备的常见功能进行操作,如状态查询、设备控制、参数配置等。 3. 高效性:数据结构简洁清晰,易于解析和扩展。 4. 扩展性&#x…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...