OpenCV相机标定与3D重建(24)计算两个二维点集之间的最佳仿射变换矩阵(2x3)函数estimateAffine2D()的使用
- 操作系统:ubuntu22.04
- OpenCV版本:OpenCV4.9
- IDE:Visual Studio Code
- 编程语言:C++11
算法描述
计算两个二维点集之间的最优仿射变换,它计算 [ x y ] = [ a 11 a 12 a 21 a 22 ] [ X Y ] + [ b 1 b 2 ] \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ \end{bmatrix} \begin{bmatrix} X\\ Y\\ \end{bmatrix} + \begin{bmatrix} b_1\\ b_2\\ \end{bmatrix} [xy]=[a11a21a12a22][XY]+[b1b2]
cv::estimateAffine2D 是 OpenCV 库中的一个函数,用于计算两个二维点集之间的最佳仿射变换矩阵(2x3)。这个函数通常用于图像配准、物体识别和追踪等领域。它通过最小化从一个点集到另一个点集的几何误差来估计变换。
函数原型
cv::Mat cv::estimateAffine2D
(InputArray from,InputArray to,OutputArray inliers = noArray(),int method = RANSAC,double ransacReprojThreshold = 3,size_t maxIters = 2000,double confidence = 0.99,size_t refineIters = 10
)
参数
- 参数from 第一个输入的2D点集,包含 (X,Y) 坐标。
- 参数to 第二个输入的2D点集,包含 (x,y) 坐标。
- 参数inliers 输出向量,指示哪些点是内点(1-内点,0-外点)。
- 参数method 用于计算变换的鲁棒方法。可能的方法包括:
- RANSAC - 基于RANSAC的鲁棒方法
- LMEDS - 最小中位数鲁棒方法
- 默认方法为 RANSAC。
- 参数ransacReprojThreshold 在RANSAC算法中,考虑一个点为内点的最大重投影误差。仅适用于RANSAC。
- 参数maxIters 鲁棒方法的最大迭代次数。
- 参数confidence 对估计变换的置信水平,在0和1之间。通常0.95到0.99之间的值就足够了。过于接近1的值可能会显著减慢估计过程。低于0.8-0.9的值可能导致变换估计不准确。
- 参数refineIters 精化算法(Levenberg-Marquardt)的最大迭代次数。传递0将禁用精化,因此输出矩阵将是鲁棒方法的输出。
返回值
返回
输出2D仿射变换矩阵 2×3,如果无法估计变换则返回空矩阵。返回的矩阵具有以下形式:
[ a 11 a 12 b 1 a 21 a 22 b 2 ] \begin{bmatrix} a_{11} & a_{12} & b_1\\ a_{21} & a_{22} & b_2\\ \end{bmatrix} [a11a21a12a22b1b2]
该函数使用选定的鲁棒算法估计两个2D点集之间的最优2D仿射变换。
计算出的变换随后会进一步通过Levenberg-Marquardt方法进行精化(仅使用内点),以进一步减少重投影误差。
注释
RANSAC 方法实际上可以处理任意比例的外点,但需要一个阈值来区分内点和外点。LMeDS 方法不需要任何阈值,但它只有在内点超过50%的情况下才能正确工作。
代码示例
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>using namespace cv;
using namespace std;int main()
{// 定义两组对应的点 (x, y) - 源点集和目标点集std::vector< Point2f > from = { Point2f( 0, 0 ), Point2f( 1, 0 ), Point2f( 0, 1 ), Point2f( 1, 1 ) };std::vector< Point2f > to = { Point2f( 2, 2 ), Point2f( 3, 2 ), Point2f( 2, 3 ), Point2f( 3, 3 ) };// 定义一个 Mat 来接收内点信息std::vector< uchar > inliers;// 调用 estimateAffine2D 函数Mat affineMatrix = estimateAffine2D( from, to, inliers );if ( !affineMatrix.empty() ){cout << "Estimated Affine Matrix:\n" << affineMatrix << endl;// 打印哪些点被认为是内点for ( size_t i = 0; i < inliers.size(); ++i ){if ( inliers[ i ] ){cout << "Point pair (" << from[ i ] << ", " << to[ i ] << ") is an inlier.\n";}else{cout << "Point pair (" << from[ i ] << ", " << to[ i ] << ") is an outlier.\n";}}}else{cout << "Failed to estimate affine transformation." << endl;}return 0;
}
运行结果
Estimated Affine Matrix:
[1, -0, 2;-0, 1, 2]
Point pair ([0, 0], [2, 2]) is an inlier.
Point pair ([1, 0], [3, 2]) is an inlier.
Point pair ([0, 1], [2, 3]) is an inlier.
Point pair ([1, 1], [3, 3]) is an inlier.
相关文章:
OpenCV相机标定与3D重建(24)计算两个二维点集之间的最佳仿射变换矩阵(2x3)函数estimateAffine2D()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算两个二维点集之间的最优仿射变换,它计算 [ x y ] [ a 11 a 12 a 21 a 22 ] [ X Y ] [ b 1 b 2 ] \begin{bmatrix} x\\ y\\ \en…...
UIP协议栈 TCP通信客户端 服务端,UDP单播 广播通信 example
文章目录 1. TCP通信 客户端(关键配置)2. TCP 服务端配置3. UDP 点播通信4. UDP 广播通信5. UIP_UDP_APPCALL 里边的处理example6. TCP数据处理 ,UIP_APPCALL调用的函数 UIP_APPCALL TCP的数据都在这个宏定义的函数里进行数据处理的 UDP 数据…...
【NoSQL系列】为什么要使用Redis?
第一次知道Redis是以前准备面试的时候,只知道是用来缓存数据的。随着这几年的工作,对软件的认识从盲人摸象到睁眼看世界。 在常用的软件架构评价模型中,性能、可用性、安全性和可维护性是常见的评价属性,客户总希望系统响应又快有…...
MySQL Explain 分析SQL语句性能
一、EXPLAIN简介 使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。 (1) 通过EXPLAIN,我们可以分析出以下结果: 表的读取顺序数据读取…...
IIS部署程序https是访问出现403或ERR_HTTP2_PROTOCOL_ERROR
一、说明 在windows server 2016中的IIS程序池里部署一套系统,通过https访问站点,同时考虑到安全问题以及防攻击等行为,就用上了WAF云盾功能,能有效的抵挡部分攻击,加强网站的安全性和健壮性。 应用系统一直能够正常…...
学技术学英文:代码中的锁:悲观锁和乐观锁
本文导读: 1. 举例说明加锁的场景: 多线程并发情况下有资源竞争的时候,如果不加锁,会出现数据错误,举例说明: 业务需求:账户余额>取款金额,才能取钱。 时间线 两人共有账户 …...
青少年编程与数学 02-004 Go语言Web编程 02课题、依赖管理
青少年编程与数学 02-004 Go语言Web编程 02课题、依赖管理 课题摘要:一、项目结构各目录说明: 二、依赖项三、依赖管理任务四、依赖管理步骤1. 初始化Go Modules项目2. 添加依赖3. 指定依赖版本4. 更新依赖5. 清理未使用的依赖6. 离线工作7. 模块隔离8. 可重现构建 …...
MyBatis写法汇总
Mybatis写法汇总 1. 批量操作 1.1 批量插入 <insert id"batchInsert" parameterType"java.util.List">INSERT INTO user (username, password, create_time) VALUES<foreach collection"list" item"item" separator"…...
【Linux学习】十五、Linux/CentOS 7 用户和组管理
文章目录 一、组的管理1.组的创建格式:参数: 2.组的删除格式:参数: 3.组的属性修改格式:参数: 4.查看组的信息①cat /etc/group 命令②getent group 命令③仅显示系统中所有组名 二、用户的管理①超级用户&…...
三维无人机航迹算法的目标函数如何确定
一、定义目标函数 在三维无人机航迹算法中,目标函数的确定通常基于具体的任务需求和飞行约束。以下是一个简单的例子,展示了如何为三维无人机航迹规划定义一个目标函数。 例子:最小化飞行时间和避障的三维无人机航迹规划 1.任务描述:无人机需要从起点飞到终点,同时避开一些…...
uniapp v-tabs修改了几项功能,根据自己需求自己改
根据自己的需求都可以改 这里写自定义目录标题 1.数组中的名字过长,导致滑动异常2.change 事件拿不到当前点击的数据,通过index在原数组中查找得到所需要的id 各种字段麻烦3.添加指定下标下新加红点显示样式 1.数组中的名字过长,导致滑动异常…...
用vscode,进行vue开发
使用Visual Studio Code(VSCode)进行Vue.js开发是一个很好的选择,因为VSCode提供了强大的编辑功能以及丰富的插件生态。以下是使用VSCode进行Vue开发的基本步骤: 1. 安装Node.js和npm 首先,确保你的计算机上安装了No…...
Kafka 磁道寻址过程详解
前言 Apache Kafka 是一款高吞吐、分布式的消息流平台,广泛应用于实时数据处理和事件驱动系统。在 Kafka 中,消息是存储在磁盘上的,这种高效的数据读写性能得益于 Kafka 独特的磁盘存储架构和寻址机制。本文将从 Kafka 的存储结构、磁道寻址…...
基于Spring Boot的社区药房系统
一、系统背景与目的 随着医疗改革的深入和社区医疗服务的不断完善,社区药房在居民健康保障中扮演着越来越重要的角色。然而,传统的药房管理方式存在着库存管理混乱、药品销售不透明、客户信息管理不规范等问题。为了解决这些问题,基于Spring…...
005 QT常用控件Qwidget_上
文章目录 前言控件概述QWidgetenable属性geometry属性windowTitle属性windowlcon属性 小结 前言 本文将会向你介绍常用的Qwidget属性 控件概述 Widget 是 Qt 中的核心概念. 英文原义是 “⼩部件”, 我们此处把它翻译为 “控件” . 控件是构成⼀个图形化界面的基本要素. QWi…...
机器学习之交叉熵
交叉熵(Cross-Entropy)是机器学习中用于衡量预测分布与真实分布之间差异的一种损失函数,特别是在分类任务中非常常见。它源于信息论,反映了两个概率分布之间的距离。 交叉熵的数学定义 对于分类任务,假设我们有&#…...
数据结构 ——前缀树查词典的实现
数据结构 ——前缀树查词典的实现 一、前缀树的概念 前缀树是一种多叉树结构,主要用于存储字符串。每个节点代表一个字符,路径从根节点到叶节点表示一个完整的字符串。前缀树的关键特征是 共享前缀,也就是说,如果两个字符串有相…...
MySQL 主从复制与高可用架构
一、MySQL 主从复制概述 (一)定义与作用 MySQL 主从复制是一种允许在多个 MySQL 数据库服务器之间进行数据同步的技术。简单来说,就是可以把数据从一个 MySQL 服务器(主服务器、主节点)复制到一个或多个从节点&#…...
【Golang】如何读取并解析SQL文件
一、背景 在数据库开发与维护过程中,我们经常需要执行大量的SQL语句。有时,这些SQL语句会被保存在一个文件中,以便于批量执行。为了方便地在Go语言中处理这些SQL文件,我们可以编写一个函数来读取并解析SQL文件中的语句。 二、实…...
git branch -r(--remotes )显示你本地仓库知道的所有 远程分支 的列表
好的,git branch -r 这个命令用于列出远程分支。让我详细解释一下: 命令: git branch -rdgqdgqdeMac-mini ProductAuthentication % git branch -rorigin/main作用: 这个命令会显示你本地仓库知道的所有 远程分支 的列表。它不…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...
