当前位置: 首页 > news >正文

矩阵在资产收益(Asset Returns)中的应用:以资产回报矩阵为例(中英双语)

本文中的例子来源于:

在这里插入图片描述

这本书,网址为:https://web.stanford.edu/~boyd/vmls/

矩阵在资产收益(Asset Returns)中的应用:以资产回报矩阵为例

在量化金融中,矩阵作为一种重要的数学工具,被广泛用于描述和分析金融市场中的资产收益。本文将结合一个具体的资产回报矩阵案例,介绍矩阵在资产收益分析中的基本概念及其实际应用。


1. 什么是资产回报矩阵?

资产回报矩阵(Asset Return Matrix)是一个二维数组,用于描述一组资产在多个时间段内的回报率(returns)。假设我们有 (T) 个时间段和 (n) 个资产,资产回报矩阵 (R) 的形式为:
R = [ R 11 R 12 ⋯ R 1 n R 21 R 22 ⋯ R 2 n ⋮ ⋮ ⋱ ⋮ R T 1 R T 2 ⋯ R T n ] . R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T1} & R_{T2} & \cdots & R_{Tn} \end{bmatrix}. R= R11R21RT1R12R22RT2R1nR2nRTn .

  • 矩阵的行(row): 每一行代表某个时间段(如某一天)内所有资产的收益。
  • 矩阵的列(column): 每一列表示某个资产在所有时间段的收益序列。
  • 矩阵中的元素 ( R i j R_{ij} Rij): 表示第 ( i i i) 个时间段内,第 ( j j j) 个资产的回报率。例如,( R 12 , 7 = − 0.03 R_{12,7} = -0.03 R12,7=0.03) 表示第 12 个时间段内,第 7 个资产的回报率为 -3%(即亏损 3%)。

2. 一个简单的案例

下面的表格显示了一个资产回报矩阵的例子,其中包含 ( n = 4 n = 4 n=4) 个资产(Apple, Google, 3M 和 Amazon)在 ( T = 3 T = 3 T=3) 个时间段(2016 年 3 月 1 日、2 日和 3 日)内的日收益率:

DateAAPLGOOGMMMAMZN
March 1, 20160.002190.00006-0.001130.00202
March 2, 20160.00744-0.00894-0.00019-0.00468
March 3, 20160.01488-0.002150.00433-0.00407

我们可以将该数据表示为矩阵 ( R R R):
R = [ 0.00219 0.00006 − 0.00113 0.00202 0.00744 − 0.00894 − 0.00019 − 0.00468 0.01488 − 0.00215 0.00433 − 0.00407 ] . R = \begin{bmatrix} 0.00219 & 0.00006 & -0.00113 & 0.00202 \\ 0.00744 & -0.00894 & -0.00019 & -0.00468 \\ 0.01488 & -0.00215 & 0.00433 & -0.00407 \end{bmatrix}. R= 0.002190.007440.014880.000060.008940.002150.001130.000190.004330.002020.004680.00407 .


3. 矩阵的解释

  1. 单个元素:
    矩阵中的每个元素 ( R i j R_{ij} Rij) 表示第 ( i i i) 个时间段内,第 ( j j j) 个资产的收益。例如:

    • ( R 1 , 1 = 0.00219 R_{1,1} = 0.00219 R1,1=0.00219):表示 2016 年 3 月 1 日 Apple 的日收益率为 0.219%。
    • ( R 2 , 2 = − 0.00894 R_{2,2} = -0.00894 R2,2=0.00894):表示 2016 年 3 月 2 日 Google 的日收益率为 -0.894%(即亏损 0.894%)。
  2. 矩阵的行:
    矩阵的每一行表示所有资产在某个时间段内的收益。例如:

    • 矩阵的第 3 行 ( [ 0.01488 , − 0.00215 , 0.00433 , − 0.00407 ] [0.01488, -0.00215, 0.00433, -0.00407] [0.01488,0.00215,0.00433,0.00407]) 表示 2016 年 3 月 3 日 Apple、Google、3M 和 Amazon 的收益率。
  3. 矩阵的列:
    矩阵的每一列表示某个资产在所有时间段的收益。例如:

    • 矩阵的第 2 列 ( [ 0.00006 , − 0.00894 , − 0.00215 ] [0.00006, -0.00894, -0.00215] [0.00006,0.00894,0.00215]) 表示 Google 在 2016 年 3 月 1 日、2 日和 3 日的日收益率。

4. 资产回报矩阵的实际应用

4.1 收益时间序列分析

对于任一资产 ( j j j),其回报的时间序列可以表示为矩阵 ( R R R) 的第 ( j j j) 列。通过分析该列,我们可以:

  • 绘制收益时间序列的趋势图。
  • 计算该资产的均值收益、标准差等统计指标,以衡量其长期表现和风险。

4.2 投资组合收益计算

假设投资者的投资组合权重为一个列向量 ( w = [ w 1 , w 2 , … , w n ] T w = [w_1, w_2, \dots, w_n]^T w=[w1,w2,,wn]T),其中 ( w j w_j wj) 表示第 (j) 个资产的权重(投资比例)。投资组合在第 ( i i i) 个时间段的收益可以通过矩阵向量乘法计算:
r i portfolio = R i , : ⋅ w , r_i^{\text{portfolio}} = R_{i,:} \cdot w, riportfolio=Ri,:w,
其中 ( R i , : R_{i,:} Ri,:) 表示第 ( i i i) 行(即所有资产在第 ( i i i) 个时间段的收益)。

例如,假设投资组合权重为 ( w = [ 0.3 , 0.3 , 0.2 , 0.2 ] T w = [0.3, 0.3, 0.2, 0.2]^T w=[0.3,0.3,0.2,0.2]T),在 2016 年 3 月 1 日的收益为:
r 1 portfolio = [ 0.00219 , 0.00006 , − 0.00113 , 0.00202 ] ⋅ [ 0.3 , 0.3 , 0.2 , 0.2 ] T = 0.000939. r_1^{\text{portfolio}} = [0.00219, 0.00006, -0.00113, 0.00202] \cdot [0.3, 0.3, 0.2, 0.2]^T = 0.000939. r1portfolio=[0.00219,0.00006,0.00113,0.00202][0.3,0.3,0.2,0.2]T=0.000939.
这表明投资组合在这一天的回报率为 0.0939%。

4.3 风险分析与协方差矩阵

矩阵 ( R R R) 的列可以用来计算资产之间的协方差矩阵 ( C C C),以评估资产间的相关性:
C = 1 T R T R . C = \frac{1}{T} R^T R. C=T1RTR.
协方差矩阵 ( C C C) 的对角线元素表示单个资产的方差,其余元素表示资产间的协方差。


5. 总结

资产回报矩阵是量化金融中的重要工具,能够有效地表示和分析资产的收益数据。通过矩阵操作,我们可以轻松完成收益时间序列分析、投资组合优化、风险评估等任务。在实际应用中,掌握矩阵的基本操作和金融意义,能够帮助我们更好地理解和分析金融市场中的数据。


Application of Matrices in Asset Returns: An Example with an Asset Return Matrix

In quantitative finance, matrices are a fundamental mathematical tool used to describe and analyze the returns of financial assets. This blog post introduces the concept of the asset return matrix and explains its significance and applications, using a simple example.


1. What is an Asset Return Matrix?

An asset return matrix represents the returns of a collection of assets over a set of time periods. If we have ( T T T) time periods and ( n n n) assets, the matrix ( R R R) is defined as:
R = [ R 11 R 12 ⋯ R 1 n R 21 R 22 ⋯ R 2 n ⋮ ⋮ ⋱ ⋮ R T 1 R T 2 ⋯ R T n ] . R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{T1} & R_{T2} & \cdots & R_{Tn} \end{bmatrix}. R= R11R21RT1R12R22RT2R1nR2nRTn .

  • Rows of the matrix represent the returns of all assets for a specific time period.
  • Columns of the matrix represent the return series for a specific asset over all time periods.
  • Elements ( R i j R_{ij} Rij) represent the return of the ( j j j)-th asset in the ( i i i)-th time period. For example, ( R 12 , 7 = − 0.03 R_{12,7} = -0.03 R12,7=0.03) means that asset 7 had a return of ( − 3 % -3\% 3%) in time period 12.

2. A Simple Example

Table shows an example of an asset return matrix for ( n = 4 n = 4 n=4) assets (Apple, Google, 3M, and Amazon) over ( T = 3 T = 3 T=3) time periods (March 1, 2, and 3, 2016):

DateAAPLGOOGMMMAMZN
March 1, 20160.002190.00006-0.001130.00202
March 2, 20160.00744-0.00894-0.00019-0.00468
March 3, 20160.01488-0.002150.00433-0.00407

This table can be written as the matrix ( R R R):
R = [ 0.00219 0.00006 − 0.00113 0.00202 0.00744 − 0.00894 − 0.00019 − 0.00468 0.01488 − 0.00215 0.00433 − 0.00407 ] . R = \begin{bmatrix} 0.00219 & 0.00006 & -0.00113 & 0.00202 \\ 0.00744 & -0.00894 & -0.00019 & -0.00468 \\ 0.01488 & -0.00215 & 0.00433 & -0.00407 \end{bmatrix}. R= 0.002190.007440.014880.000060.008940.002150.001130.000190.004330.002020.004680.00407 .


3. Interpreting the Matrix

  1. Individual elements:
    Each element ( R i j R_{ij} Rij) represents the return of asset ( j j j) in time period ( i i i). For example:

    • ( R 1 , 1 = 0.00219 R_{1,1} = 0.00219 R1,1=0.00219): Apple’s return on March 1, 2016, was 0.219%.
    • ( R 2 , 2 = − 0.00894 R_{2,2} = -0.00894 R2,2=0.00894): Google’s return on March 2, 2016, was ( − 0.894 % -0.894\% 0.894%) (a loss of 0.894%).
  2. Rows:
    Each row gives the returns of all assets in a specific time period. For example:

    • The 3rd row ( [ 0.01488 , − 0.00215 , 0.00433 , − 0.00407 ] [0.01488, -0.00215, 0.00433, -0.00407] [0.01488,0.00215,0.00433,0.00407]) shows the returns of Apple, Google, 3M, and Amazon on March 3, 2016.
  3. Columns:
    Each column gives the time series of returns for a specific asset. For example:

    • The 2nd column ( [ 0.00006 , − 0.00894 , − 0.00215 ] [0.00006, -0.00894, -0.00215] [0.00006,0.00894,0.00215]) shows Google’s returns on March 1, 2, and 3, 2016.

4. Practical Applications of the Asset Return Matrix

4.1 Return Time Series Analysis

For any specific asset ( j j j), the return time series is given by the (j)-th column of (R). This can be used to:

  • Plot the return trend over time.
  • Compute statistics such as average return, standard deviation, or volatility to assess the asset’s performance and risk.

4.2 Portfolio Return Calculation

The asset return matrix can be used to compute portfolio returns. Suppose the portfolio weights are represented as a column vector ( w = [ w 1 , w 2 , … , w n ] T w = [w_1, w_2, \dots, w_n]^T w=[w1,w2,,wn]T), where ( w j w_j wj) is the proportion of the portfolio invested in asset ( j j j). The portfolio return for time period ( i i i) is:
r i portfolio = R i , : ⋅ w , r_i^{\text{portfolio}} = R_{i,:} \cdot w, riportfolio=Ri,:w,
where ( R i , : R_{i,:} Ri,:) is the ( i i i)-th row of ( R R R) (the returns of all assets in time period ( i i i)).

For example, if the portfolio weights are ( w = [ 0.3 , 0.3 , 0.2 , 0.2 ] T w = [0.3, 0.3, 0.2, 0.2]^T w=[0.3,0.3,0.2,0.2]T), the portfolio return on March 1, 2016, is:
r 1 portfolio = [ 0.00219 , 0.00006 , − 0.00113 , 0.00202 ] ⋅ [ 0.3 , 0.3 , 0.2 , 0.2 ] T = 0.000939. r_1^{\text{portfolio}} = [0.00219, 0.00006, -0.00113, 0.00202] \cdot [0.3, 0.3, 0.2, 0.2]^T = 0.000939. r1portfolio=[0.00219,0.00006,0.00113,0.00202][0.3,0.3,0.2,0.2]T=0.000939.
This means the portfolio return on March 1, 2016, was 0.0939%.

4.3 Risk Analysis and Covariance Matrix

The columns of ( R R R) can be used to calculate the covariance matrix ( C C C) of asset returns, which helps assess the risk and correlation between assets:
C = 1 T R T R . C = \frac{1}{T} R^T R. C=T1RTR.

  • The diagonal elements of ( C C C) represent the variance of individual assets.
  • The off-diagonal elements represent the covariance between pairs of assets.

5. Conclusion

The asset return matrix is a powerful tool in quantitative finance, providing a structured way to represent and analyze asset returns. By leveraging matrix operations, we can easily perform tasks such as return time series analysis, portfolio optimization, and risk assessment. Understanding this framework is essential for anyone looking to analyze financial markets with mathematical precision.

后记

2024年12月19日21点33分于上海,在GPT4o大模型辅助下完成。

相关文章:

矩阵在资产收益(Asset Returns)中的应用:以资产回报矩阵为例(中英双语)

本文中的例子来源于: 这本书,网址为:https://web.stanford.edu/~boyd/vmls/ 矩阵在资产收益(Asset Returns)中的应用:以资产回报矩阵为例 在量化金融中,矩阵作为一种重要的数学工具,被广泛用于描述和分析…...

Docker 中如何限制CPU和内存的使用 ?

在容器化的动态世界中,Docker 已经成为构建、部署和管理容器化的关键工具应用。然而,Docker 的效率在很大程度上取决于资源管理得有多好。设置适当的内存和 CPU 限制对于优化 Docker 性能至关重要,确保每个容器在不使主机负担过重的情况下获得…...

【AIGC-ChatGPT进阶提示词-《动图生成》】怪物工厂:融合想象力与创造力的奇幻世界

引言 在这个科技飞速发展的时代,人工智能正在不断突破我们的想象。而在众多AI应用中,有一个独特的创意工具正在悄然兴起,它就是"怪物工厂"。这个神奇的工具能够将人类天马行空的想象力与AI的创造力完美结合,打造出一个个奇异、有趣、甚至有些恐怖的怪物形象。本…...

docker 使用 xz save 镜像

适用场景 如果docker save -o xxx > xxx 镜像体积过大,可以使用 xz 命令压缩。 命令 例如 save busybox:1.31.1 镜像,其中 -T 是使用多核心压缩,可以加快压缩。 docker save busybox:1.31.1 |xz -T 8 > /tmp/busybox:1.31.1安装 xz Ubuntu/Debian sudo apt upda…...

C#经典算法面试题

网络上收集的一些C#经典算法面试题,分享给大家 # 递归算法 ## C#递归算法计算阶乘的方法 > 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿…...

vulnhub靶场【DriftingBlues】之9 final

前言 靶机:DriftingBlues-6,IP地址192.168.1.66 攻击:kali,IP地址192.168.1.16 都采用虚拟机,网卡为桥接模式 主机发现 使用arp-scan -l或netdiscover -r 192.168.1.1/24 信息收集 使用nmap扫描端口 网站探测 访…...

有124个叶子节点的,完全二叉树最多有多少个节点

n=n0n1n2 其中n0为叶子节点, n2=n0-1 完全二叉树的定义和性质 最后化简,n=2*n0n1-1...

从RNN到Transformer:生成式AI自回归模型的全面剖析

个人主页:chian-ocean 文章专栏 生成式AI中的自回归模型详解 在生成式AI的飞速发展中,自回归模型作为核心技术之一,成为文本生成、语音合成、图像生成等领域的重要支柱。本文将全面探讨自回归模型的原理、架构、实际应用,并结合…...

Java爬虫大冒险:如何征服1688商品搜索之巅

在这个信息爆炸的时代,数据就是力量。对于电商平台而言,数据更是金矿。今天,我们要踏上一场Java爬虫的冒险之旅,目标是征服1688这个B2B电商巨头,获取按关键字搜索的商品信息。这不仅是技术的挑战,更是智慧的…...

基于Spring Boot的无可购物网站系统

一、系统背景与意义 随着互联网的快速发展,电子商务已经成为人们日常生活的重要组成部分。构建一个稳定、高效、可扩展的电商平台后端系统,对于满足用户需求、提升用户体验、推动业务发展具有重要意义。Spring Boot作为当前流行的Java开发框架&#xff…...

智能人家谱程序创意

实现一个家谱程序,并结合自传、视频、图片资料和智能对话系统,涉及到多个领域的技术:自然语言处理(NLP)、机器学习、计算机视觉、多媒体处理和数据存储。下面,我为你制定一个可执行的计划,详细阐…...

Redis 7.x哨兵模式如何实现?基于Spring Boot 3.x版

大家好,我是袁庭新。 在Redis主从复制模式中,因为系统不具备自动恢复的功能,所以当主服务器(master)宕机后,需要手动把一台从服务器(slave)切换为主服务器。在这个过程中&#xff0…...

解决QTCreator在Debug时无法显示std::string类型的问题

环境: 操作系统:Ubuntu 20.04.6 LTS QT版本:Qt Creator 4.11.0 问题: Debug时,无法显示std::string类型的值,如下图: 解决方法: 修改/usr/share/qtcreator/debugger/stdtypes.py…...

leetcode 面试经典 150 题:无重复字符的最长子串

链接无重复字符的最长子串题序号3类型字符串解题方法滑动窗口难度中等 题目 给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 …...

0101多级nginx代理websocket配置-nginx-web服务器

1. 前言 项目一些信息需要通过站内信主动推动给用户,使用websocket。web服务器选用nginx,但是域名是以前通过阿里云申请的,解析ip也是阿里云的服务器,甲方不希望更换域名。新的系统需要部署在内网服务器,简单拓扑图如…...

【前端】Jquery拍照,通过PHP将base64编码数据转换成PNG格式,并保存图像到本地

目录 一、需求 二、开发语言 三、效果 四、业务逻辑: 五、web端调用摄像头 六、示例代码 1、前端 2、后端 一、需求 web端使用jquery调用摄像头拍照,并使用PHP把base64编码转换成png格式图片,下载到本地。 由于js不能指定图片存储的…...

websocket再项目中的使用

WebSocket在项目中的使用‌主要包括以下几个方面: ‌WebSocket的基本概念和原理‌: ‌定义‌:WebSocket是一种基于TCP的协议,实现了浏览器与服务器之间的全双工通信。它通过HTTP/1.1协议的101状态码进行握手,建立连接‌…...

ajax同步执行async:false无效的解决方法

无效的情况: function ManHourCheck() {var StartDate $("#StartDate").val();//日报日期var EndDate $("#EndDate").val();//完成日期var UserID $("#UserID").val();//员工ID$.ajax({async: false,//加了这一行也没用!!!!!!!!!!…...

基于Qt的登陆界面设计

目标 自由发挥登录界面的应用场景,实现一个登录窗口的界面。 要求:每行代码都要有注释 代码 // 设置窗口大小为600x400像素 this->resize(600,400); // 设置窗口标题为"TheWitcher 巫师3:狂猎" this->setWindowTitle(&qu…...

HarmonyOS 输入框组件:TextInput 和 TextArea 深度解析

输入框组件是移动端开发中最常见的组件之一,常用于响应用户的输入操作,比如评论区的文本输入、聊天框的消息输入、表单内容填写等场景。在 HarmonyOS 中,TextInput 和 TextArea 分别用于单行和多行输入操作。除此之外,它们还可以与…...

【Golang】 Go 语言中的 Struct、JSON 和 Map 互转:详细指南

Go 语言中的 Struct、JSON 和 Map 互转:详细指南 在 Go 语言中,处理 JSON 数据、结构体类型和映射(map)是与 API、配置或数据库交互时非常常见的任务。理解如何在这些数据类型之间无缝转换对于高效的 Go 编程至关重要。以下是如何将 Go 结构体转换为 JSON、将 JSON 转换为…...

Azure Function流式返回

最近用azure function做了一个api和llm交互,需要流式返回。但是默认不支持流返回,搜索了一下。记录。 官方文档:https://techcommunity.microsoft.com/blog/azurecompute/azure-functions-support-for-http-streams-in-python-is-now-in-prev…...

智能座舱进阶-应用框架层-Jetpack主要组件

Jetpack的分类 1. DataBinding:以声明方式将可观察数据绑定到界面元素,通常和ViewModel配合使用。 2. Lifecycle:用于管理Activity和Fragment的生命周期,可帮助开发者生成更易于维护的轻量级代码。 3. LiveData: 在底层数据库更…...

GitLab分支管理策略和最佳实践

分支管理是 Git 和 GitLab 中非常重要的部分,合理的分支管理可以帮助团队更高效地协作和开发。以下是一些细化的分支管理策略和最佳实践: 1. 分支命名规范 • 主分支:通常命名为 main 或 master,用于存放稳定版本的代码。 • …...

【Unity】【VR开发】实现VR屏幕共享应用的几个重要插件和参考资料分享

【背景】 做了一个可以在局域网远程屏幕的VR应用,如果有相同兴趣的朋友也可以参考下我用的几个插件。 【使用或相关的关键插件】 piping server:这个是最基底的插件,基于它实现的信令通信。 https://github.com/nwtgck/piping-server/blob…...

数据结构---------二叉树前序遍历中序遍历后序遍历

以下是用C语言实现二叉树的前序遍历、中序遍历和后序遍历的代码示例&#xff0c;包括递归和非递归&#xff08;借助栈实现&#xff09;两种方式&#xff1a; 1. 二叉树节点结构体定义 #include <stdio.h> #include <stdlib.h>// 二叉树节点结构体 typedef struct…...

浏览器引入elasticsearch-head插件

elasticsearch-head插件下载&#xff1a; 链接: https://pan.baidu.com/s/1Dz3aU42HZCNg45iJoDOsMg?pwduvhg 提取码: uvhg 1、打开浏览器设置 2、选择拓展程序 3、选择elasticsearch-head插件下载 4、打开es-head插件 5、修改ip 6、登录...

【ELK】Filebeat采集Docker容器日志

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 介绍filebeat是如何工作的 使用部署filebeat 介绍 Filebeat 是一个用于转发和集中日志数据的轻量级传送器。 Filebeat 作为agent安装在服务器上&#xff0c;监视指…...

异步线程池与CountDownLatch

异步线程池 顾名思义&#xff0c;一个专门用来处理异步任务的线程池。可以避免线程的开销以及非阻塞的执行任务。 CountDownLatch 一个同步工具类&#xff0c;用于 让一个或多个线程等待一组操作完成。 业务场景 支付订单时&#xff0c;用户可以使用多张优惠劵&#xff0c…...

在图像上显示掩码、框和点的通用函数

在图像上显示掩码、框和点的通用函数 背景介绍函数实现与用途1. 显示掩码函数:`show_mask`2. 显示边界框函数:`show_box`3. 在图像上显示点函数:`show_points`4. 综合显示框和点函数:`show_points_and_boxes_on_image`5. 显示掩码并返回图像函数:`show_mask_on_image`6. 显…...