当前位置: 首页 > news >正文

GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视化了特定区域的降水量

目录

简介

函数

ee.Image.pixelLonLat()

No arguments.

Returns: Image

visualize(bands, gain, bias, min, max, gamma, opacity, palette, forceRgbOutput)

Arguments:

Returns: Image

代码解释

代码

结果


简介

GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视化了特定区域的降水量

函数

ee.Image.pixelLonLat()

Creates an image with two bands named 'longitude' and 'latitude', containing the longitude and latitude at each pixel, in degrees.

No arguments.

Returns: Image

visualize(bandsgainbiasminmaxgammaopacitypaletteforceRgbOutput)

Produces an RGB o

相关文章:

GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视化了特定区域的降水量

目录 简介 函数 ee.Image.pixelLonLat() No arguments. Returns: Image visualize(bands, gain, bias, min, max, gamma, opacity, palette, forceRgbOutput) Arguments: Returns: Image 代码解释 代码 结果 简介 GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视…...

前端实现页面自动播放音频方法

前端实现页面视频在谷歌浏览器中自动播放音频方法 了解Chrome自动播放策略 在Chrome和其他现代浏览器中,为了改善用户体验,自动播放功能受到了限制。Chrome的自动播放策略主要针对有声音的视频,目的是防止页面在用户不知情的情况下自动播放声…...

【Nginx-5】Nginx 限流配置指南:保护你的服务器免受流量洪峰冲击

在现代互联网应用中,流量波动是常态。无论是突发的用户访问高峰,还是恶意攻击,都可能导致服务器资源耗尽,进而影响服务的可用性。为了应对这种情况,限流(Rate Limiting)成为了一种常见的保护措施…...

【芯片设计- RTL 数字逻辑设计入门 番外篇 7.1 -- 基于ATE的IC测试原理】

文章目录 ATE 测试概述Opens/Shorts测试Leakage测试AC测试转自:漫谈大千世界 漫谈大千世界 2024年10月23日 23:17 湖北 ATE 测试概述 ATE(Automatic Test Equipment)是用于检测集成电路(IC)功能完整性的自动测试设备。它在半导体产业中扮演着至关重要的角色,主要用于检…...

SurfaceFlinger 学习

Android 图形系统之七:SurfaceFlinger-CSDN博客 CSDN...

Flink SQL 从一个SOURCE 写入多个Sink端实例

一. 背景 FLINK 任务从一个数据源读取数据, 写入多个sink端. 二. 官方实例 写入多个Sink语句时,需要以BEGIN STATEMENT SET;开头,以END;结尾。--源表 CREATE TEMPORARY TABLE datagen_source (name VARCHAR,score BIGINT ) WITH (connector datagen …...

python飞机大战游戏.py

python飞机大战游戏.py import pygame import random# 游戏窗口大小 WINDOW_WIDTH 600 WINDOW_HEIGHT 800# 颜色定义 BLACK (0, 0, 0) WHITE (255, 255, 255)# 初始化Pygame pygame.init()# 创建游戏窗口 window pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT))…...

【C++】14___String容器

目录 一、string基本概念 二、string赋值操作 三、字符串拼接 四、 string查找和替换 五、 string字符串比较 六、string插入和删除 七、string子串 一、string基本概念 本质:string是C风格的字符串,而string本质上是一个类 string和char*区别&am…...

数据特性库 前言

文章目录 一、num-traits库简介二、核心功能三、更新功能四、使用方式五、应用示例六、结论 一、num-traits库简介 num-traits是Rust编程语言中的一个开源库,专注于为数值类型提供一系列的数学运算特性和接口。它支持泛型数学计算,允许开发者在不指定具…...

jdk和cglib动态代理区别

目标类不同 jdk目标类需要实现接口。 cglib不需要。 代理类生成方式不同 jdk内部字节码生成代理类。 cglib使用ASM字节码生成库生成代理类。 代理类和目标类关系不同 jdk代理类实现目标类接口,jdk无法代理目标类中static或private的方法。 cglib 代理类继承目标类…...

部署Mysql、镜像和容器、常见命令

目录 部署Mysql 镜像和容器 常见命令 部署Mysql 可以有多个容器 docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shanghai \-e MYSQL_ROOT_PASSWORD123 \mysql docker run -d \--name mysql2 \-p 3307:3307 \-e TZAsia/Shanghai \-e MYSQL_ROOT_PASSWORD123 \mys…...

【数学】P2671 [NOIP2015 普及组] 求和

题目背景 NOIP2015 普及组 T3、深入浅出进阶1-5 题目描述 一条狭长的纸带被均匀划分出了 n n n 个格子,格子编号从 1 1 1 到 n n n。每个格子上都染了一种颜色 c o l o r i color_i colori​ 用 [ 1 , m ] [1,m] [1,m] 当中的一个整数表示)&…...

【AI图像生成网站Golang】项目测试与优化

AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构 五、图床上传与图像生成API搭建 六、项目测试与优化 六、项目测试与优化 在开发过程中,性能优化是保证项目可扩展性和用户体验的关键步骤。本文将详细介绍我如何使用一…...

vue常用自定义指令

参考链接1https://blog.csdn.net/m0_67584973/article/details/139300966?spm1001.2014.3001.5501 参考链接2https://juejin.cn/post/7067051410671534116...

以太网帧、IP数据报图解

注:本文为 “以太网帧、IP数据报”图解相关文章合辑。 未整理去重。 以太网帧、IP数据报的图解格式(包含相关例题讲解) Rebecca.Yan已于 2023-05-27 14:13:19 修改 一、基础知识 UDP 段、IP 数据包,以太网帧图示 通信过程中&…...

01.大模型起源与发展

知识点 注意力机制(Attention)的主要用途是什么? 选择重要的信息并忽略不相关的信息 Transformer 模型是基于什么理论构建的? C. 注意力机制(Attention) GPT 和 BERT 的主要区别是什么? C. GPT…...

leetcode刷题日记03——javascript

题目3: 回文数https://leetcode.cn/problems/palindrome-number/ 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向…...

vue横向滚动日期选择器组件

vue横向滚动日期选择器组件 组件使用到了element-plus组件库和dayjs库,使用前先保证项目中已经下载导入 主要功能:选择日期,点击日期可以让此日期滚动到视图中间,左滑右滑同理,支持跳转至任意日期,支持自…...

【大模型】大模型项目选择 RAGvs微调?

RAG 输入问题,在知识库匹配知识,构建提示词:基于{知识}回答{问题} 微调 用知识问答对重新训练大模型权重,输入问题到调整后的大模型 如何选择 如果业务要求较高,RAG和微调可以一起使用 1-动态数据 选择RAG 原因&a…...

2024年12月CCF-GESP编程能力等级认证Python编程一级真题解析

本文收录于专栏《Python等级认证CCF-GESP真题解析》,专栏总目录:点这里,订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 2024年10月8日,诺贝尔物理学奖“意外地”颁给了两位计算机科学家约翰霍普菲尔德(John J. Hopfield)和杰弗里辛顿(Geof…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...