LLM大语言模型私有化部署-使用Dify与Qwen2.5打造专属知识库
背景
Dify 是一款开源的大语言模型(LLM) 应用开发平台。其直观的界面结合了 AI 工作流、 RAG 管道、 Agent 、模型管理、可观测性功能等,让您可以快速从原型到生产。相比 LangChain 这类有着锤子、钉子的工具箱开发库, Dify 提供了更接近生产需要的完整方案,而且,可以作为 Coze 的开源平替。
Dify一词源自Define + Modify,意指定义并且持续的改进你的AI应用,它是为你而做的(Do it for you)。
上一篇我们使用 Ollama 私有化部署了一个2G大小的模型: llama3.2 (3B),本篇文章先用 Ollama 私有化部署 Qwen2.5 (7B)模型,方便后续使用 Dify 进行中文知识库的理解;接着进行私有化部署 Dify 社区版,快速搭建一个聊天助手;最后结合本地知识库作为 Dify 上下文实现真正的个人助手。
虚机资源
共用到了1台虚机,纯CPU运行,较慢😢
| 主机名 | IP | 说明 |
|---|---|---|
| llm | 192.168.44.170 | llm节点 |
基本选用当前最新版本:
- Ollama版本:v0.4.7
- Qwen版本:2.5
系统环境
[root@llm ~]# uname -a
Linux llm 5.10.0-182.0.0.95.oe2203sp3.x86_64 #1 SMP Sat Dec 30 13:10:36 CST 2023 x86_64 x86_64 x86_64 GNU/Linux
[root@llm ~]# cat /proc/version
Linux version 5.10.0-182.0.0.95.oe2203sp3.x86_64 (root@dc-64g.compass-ci) (gcc_old (GCC) 10.3.1, GNU ld (GNU Binutils) 2.37) #1 SMP Sat Dec 30 13:10:36 CST 2023
Docker镜像加速
为了确保可以成功下载到镜像,以下配置了国内目前可以使用的 Docker 镜像源地址: vi /etc/docker/daemon.json 。
{"registry-mirrors": ["https://docker.hpcloud.cloud","https://docker.m.daocloud.io","https://docker.unsee.tech","https://docker.1panel.live","http://mirrors.ustc.edu.cn","https://docker.chenby.cn","http://mirror.azure.cn","https://dockerpull.org","https://dockerhub.icu","https://hub.rat.dev","https://dockerpull.com","https://docker.hpcloud.cloud","https://docker.m.daocloud.io"]
}
修改保存之后,记得重启 docker 服务。
systemctl daemon-reload
systemctl restart docker
私有化部署Qwen2.5模型
通过 Ollama 直接拉取部署 Qwen2.5 (7B)模型。
容器化部署Qwen2.5
# 拉取qwen2.5:7b
[root@llm ~]# docker exec -it ollama ollama run qwen2.5:7b
pulling manifest
pulling 2bada8a74506... 100% ▕███████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB
pulling 66b9ea09bd5b... 100% ▕███████████████████████████████████████████████████████████████████████████████████████████▏ 68 B
pulling eb4402837c78... 100% ▕███████████████████████████████████████████████████████████████████████████████████████████▏ 1.5 KB
pulling 832dd9e00a68... 100% ▕███████████████████████████████████████████████████████████████████████████████████████████▏ 11 KB
pulling 2f15b3218f05... 100% ▕███████████████████████████████████████████████████████████████████████████████████████████▏ 487 B
verifying sha256 digest
writing manifest
success
>>> who r u?
I\'m Qwen, an AI assistant created by Alibaba Cloud. I exist to provide information, answer questions, and assist with various tasks. How can I help
you today?
[root@llm ollama]# docker exec -it ollama ollama list
NAME ID SIZE MODIFIED
qwen2.5:7b 845dbda0ea48 4.7 GB 16 minutes ago
llama3.2:latest a80c4f17acd5 2.0 GB 8 days ago
ollama常用命令
[root@llm docker]# docker exec -it ollama ollama -h
Large language model runnerUsage:ollama [flags]ollama [command]Available Commands:serve Start ollamacreate Create a model from a Modelfileshow Show information for a modelrun Run a modelstop Stop a running modelpull Pull a model from a registrypush Push a model to a registrylist List modelsps List running modelscp Copy a modelrm Remove a modelhelp Help about any commandFlags:-h, --help help for ollama-v, --version Show version informationUse "ollama [command] --help" for more information about a command.
部署Dify
Dify 官方的体验地址提供了一定的免费额度,知识库支持上传50个文档, RAG 向量空间只有5MB。不过还是建议稍微折腾一下,进行本地部署,一方面不用付费,另外数据安全也有保障。
容器化部署Dify
从GitHub上 https://github.com/langgenius/dify 下载 Dify 社区版源码。进入 ./dify-main/docker 目录,直接执行 docker-compose up -d 命令一键启动 Dify 用到的所有容器。
Note:
- Dify默认要用到80和443端口,我这里是一台干净的新虚机,没有启动其他服务,所以直接启动了,如果你的80或者其他端口被占用,可通过.env环境变量进行更改。
- 如果没有镜像,第一次启动过程会很慢,因为要到远程拉取镜像,等等吧,实际共下载了8个镜像,9个容器。
# 启动服务
[root@llm docker]# docker-compose up -d
...
Creating docker_redis_1 ... done
Creating docker_ssrf_proxy_1 ... done
Creating docker_sandbox_1 ... done
Creating docker_web_1 ... done
Creating docker_db_1 ... done
Creating docker_weaviate_1 ... done
Creating docker_worker_1 ... done
Creating docker_api_1 ... done
Creating docker_nginx_1 ... done# 查看镜像
[root@llm docker]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ghcr.io/open-webui/open-webui main 065a36698c69 12 days ago 4.22GB
ollama/ollama latest a8316b7b7fcd 13 days ago 4.65GB
nginx latest 66f8bdd3810c 2 weeks ago 192MB
postgres 15-alpine 933581caa3e7 3 weeks ago 248MB
langgenius/dify-web 0.11.2 c26e830052b6 3 weeks ago 348MB
langgenius/dify-api 0.11.2 de697455d474 3 weeks ago 2.93GB
langgenius/dify-sandbox 0.2.10 4328059557e8 8 weeks ago 567MB
redis 6-alpine 4100b5bd1743 2 months ago 35.5MB
ubuntu/squid latest 87507c4542d0 3 months ago 242MB
semitechnologies/weaviate 1.19.0 8ec9f084ab23 19 months ago 52.5MB
验证Dify安装
浏览器访问: http://192.168.44.170 打开 Dify 页面。
- 首先需要设置用户账号信息创建管理员账号

- 登录成功后,进入首页

构建聊天助手
- 创建应用
类型选择最简单的聊天助手,基础编排。

- 添加大模型
支持主流的模型托管服务商,OpenAI、Anthropic以及Ollama等;这里选择我们刚下载的Qwen2.5模型。

Note:在输入模型名称,点击保存时,会有一个调用远程模型API是否可用的校验过程,稍微会卡顿一下;如果添加失败,说明无法访问到模型的API。
- 选择模型

- 测试模型

- 对话交互

构建个人知识库
大语言模型的训练数据一般基于公开的数据,且每一次训练需要消耗大量算力,这意味着模型的知识一般不会包含私有领域的知识,同时在公开知识领域存在一定的滞后性。为了解决这一问题,目前通用的方案是采用 RAG (检索增强生成)技术,使用用户问题来匹配最相关的外部数据,将检索到的相关内容召回后作为模型提示词的上下文来重新组织回复。
这里我选择之前写的关于数据集成工具 ETLCloud 的系列文章( PDF 格式)作为知识库素材。
Note: 当前 Dify 的知识库支持以下格式的文件:
- 长文本内容(TXT、Markdown、DOCX、HTML、JSONL 甚至是 PDF 文件)
- 结构化数据(CSV、Excel 等)
- 选择数据源

- 文本分段与清洗

- 处理并完成

- 添加知识库作为聊天助手的上下文

- 询问知识库相关内容

Note:
- 打完收工,个人知识库小助手成功上线啦!
- 每次的回答输出还提供了参考文档,贴心~
离线部署
实际生产环境,有时候没有互联网环境,需要进行离线部署。
导出/导入镜像tar包
先将前面在可以连接互联网的主机上下载的镜像保存导出为tar包。
docker save langgenius/dify-web:0.11.2 -o dify-web.tar
docker save langgenius/dify-api:0.11.2 -o dify-api.tar
docker save langgenius/dify-sandbox:0.2.10 -o dify-sandbox.tar
docker save nginx:latest -o nginx.tar
docker save postgres:15-alpine -o postgres.tar
docker save redis:6-alpine -o redis.tar
docker save ubuntu/squid:latest -o squid.tar
docker save semitechnologies/weaviate:1.19.0 -o weaviate.tar
然后在需要进行离线部署的主机上执行以下命令加载镜像。
docker load -i dify-web.tar
docker load -i dify-api.tar
docker load -i dify-sandbox.tar
docker load -i nginx.tar
docker load -i postgres.tar
docker load -i redis.tar
docker load -i squid.tar
docker load -i weaviate.tar
模型迁移
比如将我们已下载的 llama3.2 、 Qwen2.5 模型迁移到离线主机上:将模型文件目录 models (这里是 /opt/ollama/models )拷贝到目标离线主机的对应目录即可。
小总结
文章主要介绍了如何使用 Ollama 和 Dify 搭建个人 AI 助手。首先通过 Ollama 私有化部署了 Qwen2.5 (7B) 模型,然后使用 Docker Compose 一键部署了 Dify 社区版平台。在 Dify 平台上,创建了基于 Qwen2.5 模型的聊天助手,并添加了个人知识库作为上下文,实现了真正的个人助手功能。文章最后还介绍了离线部署方案,包括如何导出/导入 Docker 镜像和迁移模型文件,方便在无互联网环境下部署使用。整个过程展示了从模型部署到应用构建的完整流程,为搭建私有化 AI 助手提供了实践指导。
Reference
- http://difyai.com/
- https://github.com/langgenius/dify
- https://docs.dify.ai/zh-hans
If you have any questions or any bugs are found, please feel free to contact me.
Your comments and suggestions are welcome!
相关文章:
LLM大语言模型私有化部署-使用Dify与Qwen2.5打造专属知识库
背景 Dify 是一款开源的大语言模型(LLM) 应用开发平台。其直观的界面结合了 AI 工作流、 RAG 管道、 Agent 、模型管理、可观测性功能等,让您可以快速从原型到生产。相比 LangChain 这类有着锤子、钉子的工具箱开发库, Dify 提供了更接近生产需要的完整…...
使用C语言连接MySQL
在C语言中连接MySQL数据库,通常需要使用MySQL提供的C API。以下是使用C语言连接MySQL数据库的基本步骤和示例代码: 步骤 1: 安装MySQL C API 首先,确保你的系统上安装了MySQL数据库,并且安装了MySQL C API库。在大多数Linux发行版…...
PyTorch 2.0 以下版本中设置默认使用 GPU 的方法
PyTorch 2.0 以下版本中设置默认使用 GPU 的方法 在 PyTorch 2.0以下版本中,默认情况下仍然是使用 CPU 进行计算,除非明确指定使用 GPU。在 PyTorch 2.0 以下版本中,虽然没有 torch.set_default_device 的便捷方法,但可以通过显式…...
信号槽【QT】
文章目录 对象树字符集信号槽QT坐标系信号与槽connect自定义槽自定义信号disconnect 对象树 #ifndef MYLABEL_H #define MYLABEL_H#include<QLabel> class MyLabel : public QLabel { public:// 构造函数使用带 QWidget* 版本的.// 确保对象能够加到对象树上MyLabel(QWi…...
【UE5 C++课程系列笔记】10——动态单播/多播的基本使用
目录 概念 申明动态委托 一、DECLARE_DYNAMIC_DELEGATE 二、DECLARE_DYNAMIC_MULTICAST_DELEGATE 绑定动态委托 一、BindDynamic 二、AddDynamic 三、RemoveDynamic 执行动态委托 一、Execute 二、ExecuteIfBound 三、IsBound 四、Broadcast 动态单播使用示…...
点击展示大图预览
原文链接在table表格里能够实现,点击里面的图片实现大图预览的效果; 一、先安装viewer — 使用npm安装 npm install v-viewer --save二、在main.js中引入 import Viewer from v-viewer //点击图片大图预览 import viewerjs/dist/viewer.css Vue.use(…...
【C++】分书问题:深入解析、回溯法高级应用与理论拓展
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述💯思路与算法回溯法理论基础 💯代码实现与解析完整代码代码关键步骤解析 💯时间复杂度与空间复杂度分析💯理论拓展&…...
java开发入门学习五-流程控制
流程控制语句 if, if...else, if..else if..else 与前端相同 略 switch case 与前端不同的是case不能使用表达式,使用表达式会报错 class TestSwitch {public static void main(String[] args) {// switch 表达式只能是特定的数据类型…...
【FFmpeg 教程 一】截图
本章使用 ffmpeg 实现观影中经常会用到的功能,截图。 以下给出两种方式。 课程需具备的基础能力:Python 1. 使用 subprocess 调用 FFmpeg 命令 import subprocess def extract_frame(video_path, output_image_path, timestamp"00:00:05")&qu…...
北邮,成电计算机考研怎么选?
#总结结论: 基于当前提供的24考研复录数据,从报考性价比角度,建议25考研的同学优先选择北邮计算机学硕。主要原因是:相比成电,北邮计算机学硕的目标分数更低,录取率更高,而且北邮的地理位置优势明显。对于…...
深入了解京东API接口:如何高效获取商品详情与SKU信息
在当今数字化时代,电商平台的数据接口成为了连接商家与消费者的桥梁。京东作为国内领先的电商平台,其API接口为开发者提供了丰富的商品信息获取途径。本文将深入探讨如何使用京东API接口高效获取商品详情与SKU信息,并附上简短而实用的代码示例…...
C++常见内存泄漏案例分析以及解决方案
C 常见内存泄漏案例分析以及解决方案 1. 分配与释放不匹配 在动态内存管理中,使用new操作符分配的内存必须通过delete操作符显式释放。若未遵循这一规则,将导致内存泄漏。例如: int *p new int; p new int; // 错误:未释放先…...
[LeetCode-Python版]206. 反转链表(迭代+递归两种解法)
题目 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例 3࿱…...
70 mysql 中事务的隔离级别
前言 mysql 隔离级别有四种 未提交读, 已提交读, 可重复度, 序列化执行 然后不同的隔离级别存在不同的问题 未提交读存在 脏读, 不可重复度, 幻觉读 等问题 已提交读存在 不可重复度, 幻觉读 等问题 可重复读存在 幻觉读 等问题 序列化执行 没有以上问题 然后 我们这里…...
C语言二叉树
1.思维导图 树 二叉树 2.将链式队列重新实现一遍 linkqueue.c #include"linkqueue.h" linkqueuePtr create() {linkqueuePtr L(linkqueuePtr)malloc(sizeof(linkqueue));if(NULLL){printf("队列创建失败\n");return NULL;}L->head(nodePtr)malloc(si…...
智能工厂的设计软件 三种处理单元(NPU/GPU/CPU)及其在深度学习框架中的作用 之1
本文要点 深度学习:认知系统架构的处理层 在认知系统架构的设计和代码实现上 需要考虑多个层次,包括感知层、处理层、决策层和执行层。其中 深度学习主要用来解决处理层上的认知问题。 感知层:负责收集外部环境的信息。 处理层:…...
iOS swift开发系列--如何给swiftui内容视图添加背景图片显示
我需要在swiftui项目中显示背景图,有两种方式,一种是把图片拖入asset资源中,另外一种是直接把图片放在源码目录下。采用第一种方式,直接把图片拖到资源目录,但是swiftui项目没有弹出, “Copy items if need…...
jmeter后端监视器
一、概述 JMeter 后端监听器(Backend Listener)是 JMeter 提供的一个功能强大的插件,用于将测试执行期间收集的性能数据发送到外部系统进行监控和分析。通过后端监听器,您可以实时地将 JMeter 测试执行期间收集的数据发送到外部系统,如图形化展示、数据库、数据分析工具等…...
服务器数据恢复—RAIDZ离线硬盘数超过热备盘数导致阵列崩溃的数据恢复案例
服务器存储数据恢复环境: ZFS Storage 7320存储阵列中有32块硬盘。32块硬盘分为4组,每组8块硬盘,共组建了3组RAIDZ,每组raid都配置了热备盘。 服务器存储故障: 服务器存储运行过程中突然崩溃,排除人为误操…...
面试题整理4----lvs,nginx,haproxy区别和使用场景
LVS、Nginx、HAProxy:区别与使用场景 1. LVS(Linux Virtual Server)1.1 介绍1.2 特点1.3 使用场景 2. Nginx2.1 介绍2.2 特点2.3 使用场景 3. HAProxy3.1 介绍3.2 特点3.3 使用场景 4. 总结对比 在构建高可用、高性能的网络服务时,…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
边缘计算网关提升水产养殖尾水处理的远程运维效率
一、项目背景 随着水产养殖行业的快速发展,养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下,而且难以实现精准监控和管理。为了提升尾水处理的效果和效率,同时降低人力成本,某大型水产养殖企业决定…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...
SE(Secure Element)加密芯片与MCU协同工作的典型流程
以下是SE(Secure Element)加密芯片与MCU协同工作的典型流程,综合安全认证、数据保护及防篡改机制: 一、基础认证流程(参数保护方案) 密钥预置 SE芯片与MCU分别预置相同的3DES密钥(Key1、Key2…...
[论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
【论文解读】MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准 论文信息 arXiv:2506.03585 Improving LLM-Based Fault Localization with External Memory and Project Context Inseok Yeo, Duksan Ryu, Jongmoon Baik Subjects: Software Engi…...
