当前位置: 首页 > news >正文

Unity局部和世界坐标系相互转换的实现原理

注:本篇是基于唐老师的学习视频做的一些理论实践,需要提前知道一些线性代数的基础知识,原视频链接:

8.数学基础知识学习说明_哔哩哔哩_bilibili

前期准备:

知识点①:

        Unity中需要遵守的设定:

                1、我们约定变换顺序为:缩放->旋转->平移。

                2、我们约定旋转的顺序为:Z->X->Y。

知识点②:

        1、基础变换矩阵的构成规则:

        2、平移矩阵的定义:

                A=\begin{bmatrix} 1 & 0& 0 & tx \\ 0& 1& 0& ty\\ 0& 0& 1& tz\\ 0& 0&0 & 1 \end{bmatrix}       逆矩阵     A^{-1}=\begin{bmatrix} 1 & 0 & 0 & -tx \\ 0& 1 & 0& -ty\\ 0& 0& 1 & -tz\\ 0& 0& 0& 1 \end{bmatrix}

        3、旋转矩阵的定义:    

                       绕X轴旋转\beta度:                        绕Y轴旋转\beta度:                       绕Z轴旋转\beta度:

               \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}

                因为旋转矩阵是正交矩阵,所以它的逆矩阵就是它的转置矩阵。

                即:假设有旋转矩阵A,那么 A^{-1}=A^{T}

        4、缩放矩阵的定义:

                A=\begin{bmatrix} kx & 0 & 0 & 0\\ 0 & ky & 0 & 0\\ 0 & 0 & kz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}    逆矩阵   A^{-1}=\begin{bmatrix} 1/kx & 0 & 0 & 0\\ 0 & 1/ky & 0 & 0\\ 0 & 0 & 1/kz & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

局部坐标转世界:

        我们需要明白一个概念,在3D空间中,假设有一个结点R存在一个子节点A,那么如果R就是坐标原点,A的局部坐标系就是世界坐标系。如果结点R存在旋转,平移等变换,那么A的局部坐标依旧不会变,R的变换会带动A的变换。那么最终的世界坐标满足关系式:

{A}'=M*A

M代表R的变换矩阵,A代表R在原点时的世界坐标(即局部坐标),A'代表最终的世界坐标。

再根据知识点1,得到矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C

便有如下代码:

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class Test : MonoBehaviour
{public Transform targetTrans;private void Start(){Vector4 startPos = new Vector4(targetTrans.localPosition.x, targetTrans.localPosition.y, targetTrans.localPosition.z, 1);Matrix4x4 scaleMatrix = ScaleMatrix(transform.localScale.x, transform.localScale.y, transform.localScale.z);Matrix4x4 rotateMatrix = RotateYMatrix(transform.eulerAngles.y)*RotateXMatrix(transform.eulerAngles.x)*RotateZMatrix(transform.eulerAngles.z);Matrix4x4 translateMatrix = TranslateMatrix(transform.position.x, transform.position.y, transform.position.z);//按照缩放->旋转(按照Z->X->Y顺序旋转)->平移的变换顺序Vector4 resPos = translateMatrix * rotateMatrix * scaleMatrix * startPos;Debug.Log(string.Format("局部坐标转世界坐标={0}",resPos));Debug.Log(string.Format("调用UnityAPI的结果={0}",transform.TransformPoint(startPos)));}//缩放矩阵private Matrix4x4 ScaleMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = x;targetMatrix.m11 = y;targetMatrix.m22 = z;targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(X轴)private Matrix4x4 RotateXMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = 1;targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m12 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m21 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Y轴)private Matrix4x4 RotateYMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m02 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = 1;targetMatrix.m20 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Z轴)private Matrix4x4 RotateZMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m01 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m10 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}//平移矩阵private Matrix4x4 TranslateMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m03 = x;targetMatrix.m13 = y;targetMatrix.m23 = z;targetMatrix.m00 = 1;targetMatrix.m11 = 1;targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}
}

挂载脚本:

我们用了Unity自带的局部转世界的APITransform.TransformPoint进行结果对比,发现最终的计算结果是一样的(忽略第四个参数1.0,代表的含义是点)。

世界坐标转局部:

        由刚刚的{A}'=M*A公式推导,其实可以得到:

                                        ​​​​​​​                M^{-1}*{A}'=A

        即局部坐标=逆变换*世界坐标

由上面的性质得到已知  矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C,那么矩阵M的逆矩阵

                                                         M^{-1}=C^{-1}*B^{-1}*A^{-1}

矩阵A,B,C的逆矩阵都可以根据知识点2得到结果,最终就可以根据世界坐标和逆变换反推导局部坐标。

相关文章:

Unity局部和世界坐标系相互转换的实现原理

注:本篇是基于唐老师的学习视频做的一些理论实践,需要提前知道一些线性代数的基础知识,原视频链接: 8.数学基础知识学习说明_哔哩哔哩_bilibili 前期准备: 知识点①: Unity中需要遵守的设定:…...

MySQL通用语法 -DDL、DML、DQL、DCL

SQL 全称 Structured Query Language,结构化查询语言。操作关系型数据库的编程语言,定义了 一套操作关系型数据库统一标准 。 SQL通用语法 MySQL语言的通用语法。 SQL语句可以单行或多行书写,以分号结尾。SQL语句可以使用空格/缩进来增强…...

C# 6.0 连接elasticsearch数据库

在 C# 6.0 中连接 Elasticsearch 数据库,您可以使用官方的 Elasticsearch 客户端库 NEST。NEST 是一个高性能的 .NET 客户端,用于与 Elasticsearch 进行交互。以下是一个详细的步骤指南,帮助您在 C# 6.0 项目中连接和操作 Elasticsearch。 1. 安装 NEST 包 首先,您需要在您…...

占个坑:利用工作以外的时间,用numpy实现MLP-手写识别

背景 随着近半年的正式工作,一直在做的都是模型后处理相关的,逐渐意识到技术的自我迭代陷入了瓶颈。组里都是搞模型的,对于缺少模型背景的我,很难深刻理解同事将模型和业务结合时好的idear,这使得我难以掌握组里最核心…...

抽象之诗:C++模板的灵魂与边界

引言 在计算机科学的浩瀚长河中,C模板如同一颗璀璨的星辰,以其独特的泛型编程方式为程序设计注入了灵魂。它是抽象的艺术,是类型的舞蹈,是效率与灵活性的交响乐。模板不仅是一种技术工具,更是一种哲学思考&#xff0c…...

后端统一接口返回状态【初步模板】

后端统一接口返回状态【模板】 文章目录 后端统一接口返回状态【模板】1 .Result类编写2 .Constants类编写3 .更改Controller层下的类return格式 开发过程中,每个接口的返回格式设计都是一样的,这样可以大大提高开发效率。 项目结构如下图:分…...

呼入机器人:24小时客户服务的未来趋势

呼入机器人:24小时客户服务的未来趋势 作者:开源大模型智能呼叫中心系统FreeAICC,Github:https://github.com/FreeIPCC/FreeAICC 在当今快节奏的商业环境中,客户服务已成为企业竞争的核心要素之一。随着人工智能技术…...

whisper.cpp: PC端测试 -- 电脑端部署音频大模型

whisper.cpp: PC端测试 1.环境需要2.构建项目3.PC测试 1.环境需要 以下是经实验验证可行的环境参考,也可尝试其他版本。 (1)PC:Ubuntu 22.04.4 (2)软件环境:如下表所示 工具版本安装Anacond…...

WPF ControlTemplate 控件模板

区别于 DataTemplate 数据模板,ControlTemplate 是控件模板,是为自定义控件的 Template 属性服务的,Template 属性类型就是 ControlTemplate。 演示, 自定义一个控件 MyControl,包含一个字符串类型的依赖属性。 pub…...

序列化和反序列化(一)

因为通过这段时间的学习,发现,序列化和反序列化的考点和漏洞在平时遇到的还是比较多的,而且自己也没有特别去学习过这个知识点,所以在这里写一篇关于这里序列化和反序列话的博客,废话就停止在这里了。 在介绍具体的序列…...

Kubeadm+Containerd部署k8s(v1.28.2)集群(非高可用版)

Kubeadm+Containerd部署k8s(v1.28.2)集群(非高可用版) 文章目录 Kubeadm+Containerd部署k8s(v1.28.2)集群(非高可用版)一.环境准备1.服务器准备2.环境配置3.设置主机名4.修改国内镜像源地址5.配置时间同步6.配置内核转发及网桥过滤二.容器运行时Containerd安装(所有节点)…...

取子串(指针)

#include <stdio.h> #include <string.h>char* substr(char *s, int startloc, int len) {static char result[51]; // 定义一个足够大的静态数组来存储结果static char result1[] {N,U,L,L,\0};int i, j;// 检查startloc是否在字符串的范围内if (startloc < 1…...

Linux系列之如何更换Centos yum源?

系列博客专栏&#xff1a; JVM系列博客专栏SpringBoot系列博客 环境 Centos7Xshell7 问题描述 最近安装了一个虚拟机&#xff0c;准备用来学习&#xff0c;不过使用yum命令安装一些软件&#xff0c;不过使用这个命令时候&#xff0c;提示 Cannot find a valid baseurl fo…...

过滤器和拦截器的区别详解

文章目录 过滤器和拦截器的区别详解1. 来源不同2. 触发时机不同3. 实现原理不同4. 支持的项目类型不同5. 使用场景不同6. 核心区别总结**总结** 过滤器和拦截器的区别详解 在 Web 开发中&#xff0c;过滤器&#xff08;Filter&#xff09; 和 拦截器&#xff08;Interceptor&a…...

centos使用mkisofs构建无人值守镜像(附官方学习文档)

安装mkisofs yum install -y mkisofs 挂载镜像并确认 并拷贝文件(/mnt 为我们的工作目录) 1.3 准备自动应答文件(保存为 ins.ks) 修改系统引导 实际上就是添加inst.ks 这个引导参数 传递应答文件 传统模式引导 UEFI模式引导 打包镜像 通用选项 -v&#xff1a;启用详细模式&a…...

Pyside6+qml+Qtcreator项目实战

Pyside6+qml+Qtcreator项目实战 B站视频教程,进去后记得点赞。最终运行效果: PYTHON and QT QUICK - Custom Buttons With QML And JavaScript - [MODERN GUI]-#012 开发环境: 1、Qt 6.7.2 2、Pyside6 3、Python 3.11.4 4、Windows 10 原视频是用的Qt5,我这里采用Qt6重新…...

秒鲨后端之MyBatis【1】环境的搭建和核心配置文件详解

​ 别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01;! ! ! Mybatis简介 MyBatis历史 MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投Google Code旗下&#xff…...

编译原理复习---目标代码生成

适用于电子科技大学编译原理期末考试复习。 1. 目标代码 是目标机器的汇编代码或机器码&#xff0c;在本课程中指的是类似于汇编代码的一种形式&#xff0c;由一条条的指令构成目标代码。 抽象机指令格式&#xff1a;OP 目的操作数&#xff0c;源操作数。 我们要做的&…...

Winnows基础(2)

Target 了解常见端口及服务&#xff0c;熟练cmd命令&#xff0c;编写简单的 .bat 病毒程序。 Trail 常见服务及端口 80 web 80-89 可能是web 443 ssl心脏滴血漏洞以及一些web漏洞测试 445 smb 1433 mssql 1521 oracle 2082/2083 cpanel主机管理系统登陆&#xff08;国外用的…...

酒蒙子骰子小程序系统

酒蒙子流量变现小程序小游戏 后端tp8 前端uniapp 会员变现 分销推广 流量主 …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...