深度学习中自适应学习率调度器
传统观点认为,太大的学习率不利于优化深度神经网络,而相比固定的学习率而言,变化的学习率更能提供快速的收敛。基于此,本文作者基于理论基础提出了一个计算深度神经网络学习率的新方法。实验结果证明了该方法的有效性。
训练神经网络受到几个问题的困扰。这些问题包括梯度消失、梯度爆炸 [7,3] 和过拟合。包括不同激活函数 [14,17]、批归一化 [12]、新颖的初始化方案 [9] 以及 Dropout[26] 在内的多种进展都为这些问题提供了解决方案。
但是,一个更基本的问题是为不同的超参数寻找最优值,而对这个问题而言学习率可以说是最重要的。众所周知,学习率太小会导致收敛变慢,但是太大的学习率又会导致发散 [2]。近期的研究一致认为,与固定的学习率相比,变化的学习率调度系统能够提供更快的收敛 [20,23]。而觉得不应使用较大学习率的传统经验也被认为有问题,可能导致「超收敛」和规则效应(regularizing effect)[25]。本文的实验结果和这个说法是一致的;但是作者没有使用循环的学习率,而是提出了一种基于理论基础来计算自适应学习率的新方法。
据作者所知,这是首次提出具有理论基础的自适应学习率调度器并且在标准数据集和网络架构上进行实证研究。所以,本文的贡献是双重的。首先,作者基于损失函数的利普希茨常数(Lipschitz),提出了一个用于在深度神经网络的随机梯度下降中计算最优学习率的新理论框架。其工作表明,在激活函数的特定选择方面,仅最后两层的激活函数是计算学习率时所需要的。其次,作者为几个常用的损失函数计算了理想的学习率,并用这些公式实验性地证明了其方法的有效性。
本文方法利用了损失函数的函数属性,仅对损失函数做了两个最小限度的假设:它必须是利普希茨连续的 [19], 且至少是一阶可微的。常用的损失函数都满足这两个条件。
论文:A novel adaptive learning rate scheduler for deep neural networks
论文地址:https://arxiv.org/abs/1902.07399
摘要:
优化深度神经网络在很大程度上被认为是一个经验过程,它需要手动调节几个参数,例如学习率、权重衰减以及随机失活率(dropout rate)。可以说,学习率是这些需要调节的参数中最重要的一个,它在最近的工作中也得到了更多的关注。在本文中,我们提出了一个计算深度神经网络学习率的新方法。我们推导了动态计算学习率的理论框架,然后展示了在标准数据集和模型架构上的实验结果来证明该方法的有效性。
理论框架
对一个使用 Sigmoid、ReLU 或者 softmax 激活函数的神经网络来说,很容易表现出这样的现象:反向传播时朝着浅层的方向梯度会越来越小。因此,最后一层的梯度是反向传播过程中计算出的梯度中最大的一个。如果
是第 l 层节点 i 到节点 j 的权重,并且 L 是总的层数,那么:
本质上,公式 (1) 表示误差对最后一层权重的最大梯度比误差对网络中任何权重的梯度都要大。显然这也可以扩展到偏置(bias)。换句话说,找到最后一层的最大梯度就确定了误差的利普希茨常数的上确界,这里的梯度都是根据每一层的权重参数来取的。
我们现在分析得出了不同类型问题的理论上确界。这些数值的倒数可以用作梯度下降的学习率。在任何一层中,我们都会有这种计算:
因此,最后一层中任何权重的梯度都是通过下面的链式法则来计算的:
第三部分是不能解析计算的;我们将它记作 K_z。现在看一下不同类型的问题,并计算这些组成部分。
实验
下面我们展示了在一些公开数据集上的实验结果和细节。虽然我们的结果不是最先进的,但我们的重点是凭经验证明随机梯度下降是可以通过更大的学习率来进行的,而不是像通常理解的那样只能用小一些的学习率。我们所有的实验都是在特斯拉 P100 GPU 上运行的,如果没有特殊说明,模型也是使用(没有动量或者权重衰减的)随机梯度下降优化器进行优化的。在 CIFAR 数据集上,我们和 [10] 一样仅使用了翻转和平移增强方案。在所有实验中,原始图像的像素数值都除以 255。
在 MNIST 上的实验只使用了一个自适应学习率,而因为利普希茨常数,学习率在每个 epoch 中都会被重新计算。
图 1 展示了训练集和验证集上准确率和损失函数随着 epoch 的变化而变化。图 2 展示了在各个 epoch 计算的学习率。请注意,与 CIFAR-10(图 5)和 CIFAR-100(图 6)中计算的自适应学习率不同,MNIST 的学习率从高得多的值开始。
图 5 展示了不同时间的学习率随。正如相关文献所表明的,自适应方案会自动选择一个衰减的学习率。
图 6 展示了在各个 epoch 的学习率。与 CIFAR-10 一样,前两个 epoch 会以很小的学习率开始(10^(-8)),但是模型会快速适应不断变化的权重。
图 6: CIFAR-100 上随着时间变化的自适应学习率。
见博客 https://www.163.com/dy/article/E945E6DP0511AQHO.html
相关文章:

深度学习中自适应学习率调度器
传统观点认为,太大的学习率不利于优化深度神经网络,而相比固定的学习率而言,变化的学习率更能提供快速的收敛。基于此,本文作者基于理论基础提出了一个计算深度神经网络学习率的新方法。实验结果证明了该方法的有效性。 训练神经…...

Phono3py hdf5文件数据读取与处理
Phono3py是一个主要用python写的声子-声子相互作用相关性质的模拟包,可以基于有限位移算法实现三阶力常数和晶格热导率的计算过程,同时输出包括声速,格林奈森常数,声子寿命和累积晶格热导率等参量。 相关介绍和安装请参考往期推荐…...

React 底部加载组件(基于antd)
底部加载组件的意义在于提供一种流畅的用户体验,以便在用户滚动到页面底部时自动加载更多内容。这样可以让用户无需离开当前页面,就能够无缝地浏览更多的内容.通过底部加载组件,可以分批加载页面内容,减少一次性加载大量数据对页面…...

将HTML转换为PDF:使用Spire.Doc的详细指南(一) 试用版
目录 引言 1. 为什么选择 Spire.Doc? 1.1 主要特点 1.2 适用场景 2. 准备工作 2.1 引入 Spire.Doc 依赖 2.2 禁用 SSL 证书验证 3. 实现功能 3.1 主类结构 3.2 代码解析 4. 处理图像 5. 性能优化 5.1 异步下载图像 示例代码 5.2 批量处理优化 示例代…...

数据结构经典算法总复习(下卷)
第五章:树和二叉树 先序遍历二叉树的非递归算法。 void PreOrderTraverse(BiTree T, void (*Visit)(TElemType)) {//表示用于查找的函数的指针Stack S; BiTree p T;InitStack(S);//S模拟工作栈while (p || !StackEmpty(S)) {//S为空且下一个结点为空,意味着结束遍…...

mac 安装graalvm
Download GraalVM 上面链接选择jdk的版本 以及系统的环境下载graalvm的tar包 解压tar包 tar -xzf graalvm-jdk-<version>_macos-<architecture>.tar.gz 移入java的文件夹目录 sudo mv graalvm-jdk-<version> /Library/Java/JavaVirtualMachines 设置环境变…...

【SH】在Ubuntu Server 24中基于Python Web应用的Flask Web开发(实现POST请求)学习笔记
文章目录 Flask开发环境搭建保持Flask运行Debug调试 路由和视图可变路由 请求和响应获取请求信息Request属性响应状态码常见状态码CookieSession 表单GET请求POST请求 Flask 在用户使用浏览器访问网页的过程中,浏览器首先会发送一个请求到服务器,服务器…...

一些经济政治学类书籍推荐 --- 以及与之相关我的经历和理解
我给所开设的兴趣专栏_墨#≯的博客-CSDN博客,的介绍是: 聊聊关于文学、经济(股票等)、法律方面的个人感受与理解。 不过目前已有的两篇以及现在在写的这篇都是经济相关的,其实专栏开设的9月至今,我也看了好几本文学相关的书&#…...

设计模式之 abstract factory
适用场景 一个系统要独立于它的产品的创建、组合和表示时。一个系统要由多个产品系列中的一个来配置时。当你要强调一系列相关的产品对象的设计以便进行联合使用时。当你提供一个产品类库,而只想显示它们的接口而不是实现时 架构演示 首先client这个东西可以接触到…...

汽车IVI中控开发入门及进阶(三十八):手机投屏HiCar开发
手机投屏轻松实现手机与汽车的无缝连接,导航、音乐、通话等功能应有尽有,还支持更多第三方应用,让车载互联生活更加丰富多彩。 HiCar在兼容性和开放性上更具优势。 手机投屏可以说是车机的杀手级应用,大大拓宽了车机的可用性范围。其中华为推出的HiCar就是非常好用的一种。…...

Springmvc,spring ,mybatis,整合,ssm
上一章内容: 1.spring框架:作用 开源的框架--提供IOC和AOPIOC控制反转 把创建对象的权力交于spring创建,并管理对象的生命周期,通过DI完成对象属性的注入。 2. spring配置中<bean>也可以使用注解Component Controller Service Repo…...

《庐山派从入门到...》板载按键启动!
《庐山派从入门到...》板载按键启动! 《庐山派从入门到...》板载按键启动! 视频内容大致如下 我们之前了解了GPIO的输出模式使用方法,并且成功点灯,很明显本篇要来分享的自然是GPIO的输入模式 正好回顾一下之前学的python基础包…...

Mapbox-GL 中 `token` 的使用
Mapbox-GL 是一个开源的 JavaScript 库,允许开发者在网页上渲染交互式地图。token 在 Mapbox 中主要是指 access token,它用于身份验证和授权,确保应用程序能够访问 Mapbox 的地图服务。 下面详细解析 Mapbox GL 中 token 的使用,…...

Flutter组件————PageView
PageView 可以创建滑动页面效果的widget,它允许用户通过水平或垂直滑动手势在多个子页面(child widgets)之间切换。每个子页面通常占据屏幕的全部空间。 参数 参数名类型描述childrenList<Widget>包含在 PageView 中的所有子部件&am…...

c#自定义事件
自定义事件类 定义一个自定义事件参数类 为了传递更多的信息,我们定义一个自定义的事件参数类 public class CustomEventArgs : EventArgs {public string Message { get; set; } } 3. 定义一个发布者类 接下来,我们定义一个发布者类,包含…...

【读书笔记】《论语别裁》寂寞的享受
1.内容摘要 在《论语别裁》中,第一章《学而》探讨了做学问的孤独与坚持。作者强调,真正的学者在追求知识时,必须保持“仁”与“义”的核心价值观,愿意为自己的信念与理想而牺牲。他以孔子为例,描绘了孔子一生的寂寞与…...

Oracle筑基篇-调度算法-LRU的引入
常见的调度算法 图1 调度算法思维导图 一、LRU算法的典型使用场景 1. 操作系统中的页面置换 什么时候用到页面置换算法呢? 当CPU发出指令需要访问某个地址时,若该地址在TLB(Translation Lookaside Buffer,快表)或页…...

单元测试-Unittest框架实践
文章目录 1.Unittest简介1.1 自动化测试用例编写步骤1.2 相关概念1.3 用例编写规则1.4 断言方法 2.示例2.1 业务代码2.2 编写测试用例2.3 生成报告2.3.1 方法12.3.2 方法2 1.Unittest简介 Unittest是Python自带的单元测试框架,适用于:单元测试、Web自动…...

linux驱动:6ull(3)自动分配设备号来创建led驱动
在 linux驱动:6ull(2)的文章代码上进行更改 步骤: 创建入口函数和出口函数定义一个设备结构体和创建一个led设备在入口函数init中添加初始化led的gpio在入口函数init中添加自动分配设备号来创建led字符设备在出口函数中取消led的…...

GM_T 0039《密码模块安全检测要求》题目
单项选择题 根据GM/T 0039《密码模块安全检测要求》,送检单位的密码模块应包括()密码主管角色。 A.一个 B.两个 C.至少一个 D.至少两个 正确答案:C 多项选择题 根据GM/T 0039《密码模块安全检测要求》,关于非入侵式安全,以下属于安全三级密码模块要求的是()。 …...

第四届电气工程与控制科学
重要信息 官网:www.ic2ecs.com 时间:2024年12月27-29日 简介 第四届电气工程与控制科学定于2024年12月27-29日在中国南京召开。主要围绕“电气工程“、”控制科学“、”机械工程“、”自动化”等主题展开,旨在为从电…...

LabVIEW在电液比例控制与伺服控制中的应用
LabVIEW作为一种图形化编程环境,广泛应用于各类控制系统中,包括电液比例控制和伺服控制领域。在这些高精度、高动态要求的控制系统中,LabVIEW的优势尤为突出。以下从多个角度探讨其应用与优势: 1. 灵活的控制架构 LabVIEW为电…...

植物大战僵尸杂交版v3.0.2最新版本(附下载链接)
B站游戏作者潜艇伟伟迷于12月21日更新了植物大战僵尸杂交版3.0.2版本!!!,有b站账户的记得要给作者三连关注一下呀! 不多废话下载链接放上: 夸克网盘链接::https://pan.quark.cn/s/5c…...

车辆重识别代码笔记12.19
1、resnet_ibn_a和resnet网络的区别 ResNet-IBN-A 是在 ResNet 基础上进行了一些改进的变种,具体来说,它引入了 Instance Batch Normalization (IBN) 的概念,这在某些任务中(如图像识别、迁移学习等)有显著的性能提升。…...

linux内核网络分层概述
在开发应用时,我们使用 socket 实现网络数据的收发。以tcp为例,server端通过 socket, bind, listen来创建服务端,然后通过 accept接收客户端连接;客户端通过 socket和 connect系统调用来创建客户端。用于数据收发的系统调用包括 s…...

H3C交换机配置 telnet 服务
使用一个交换机做成 telnet 服务, telnet 可以使用指定端口开启三层交换机, 用于与 pc 互通, 也可以使用自带的 vlan1 设置 ip 然后达到互通, 因为华三的交换机端口默认是 access 口, 默认带 vlan1 , 直接设置 vlan1 的 ip 也就可以实现互通 实现互通 互通的两种方式 设置 vl…...

江苏计算机专转本 技能Mysql知识点总结(二)
三、SQL数据操纵语言(增删改查) 1.insert 语句(增) INSERT INTO 表名 (列1, 列2, 列3) VALUES (值1, 值2, 值3); 2.Delete 语句(删) //1. DELETE FROM 表名 WHERE 条件;//2. truncate table 表名; …...

边缘智能网关助力打造建筑智慧消防物联网
随着经济社会的快速发展,为了满足民众生产、生活、消费需求,高层建筑、大型综合连体建筑持续兴建,各类火灾风险和事故也越发增加。得益于物联网的普及应用,消防监测和管理迎来数字化、智慧化转型升级。 针对各类高层、大型建筑消防…...

学习Cookie 提升
目录 Cookie 的覆盖 Cookie下的path 特点 设置Cookie 路径 实例 Cookie的最大存活时间 设置Cookie 存活时间 实例 Cookie 和session的区别 和联系 Cookie 的覆盖 当 key相同 和只要path的上级目录的路径相同,就可以被替换掉 value 值 如下图…...

OpenAI 发布会 9 天技术总结
OPEN AI 发布会总结 OpenAI 发布会 12 天技术总结Day 1: 开幕与愿景主要内容:体验方式: Day 2: GPT-4 及其突破性进展主要内容:体验方式: Day 3: GPT-4 在编程领域的突破 - Codex & Copilot主要内容:体验方式&…...