大数据机器学习算法和计算机视觉应用07:机器学习
Machine Learning
- Goal of Machine Learning
- Linear Classification
- Solution
- Numerical output example: linear regression
- Stochastic Gradient Descent
- Matrix Acceleration
Goal of Machine Learning 机器学习的目标
假设现在有一组数据 x i , y i {x_i,y_i} xi,yi,其中 x c ∈ R d x_c \in \R^d xc∈Rd,d指的是特征数,而 y c ∈ R y_c \in \R yc∈R是标签值(label)。
上述数据被称为训练集(training data set)。而机器学习的目的就是训练一个模型(model)(或者假说) h h h在某种条件下最贴近该训练集数据。
现在假设出现了一个新的点 x ∗ ∈ R d x* \in \R^d x∗∈Rd,我们需要用我们的模型去预测其标签值 y ∗ y* y∗,这个值 x ∗ x* x∗就被称作检验数据(test data),模型检测标签值的准确程度被叫做泛化误差(generalization error)。
Linear Classification 线性分类
上述情景的一个经典例子是线性分类。
条件:在平面上有一堆红色的点和黑色的点。
目标:找到一条直线,使得所有红色的点都在直线一侧,而黑色点都在直线另一侧。
我们保证这个直线是存在的,如何找到满足条件的直线呢?
我们将点到直线的垂直距离记为模型的标签值,并且希望所有红色点的垂直距离为正,而黑色点的垂直距离为负,这样他们就一定分布在直线的异侧。
因此我们得到训练集:
( x 1 , 0 ) , ( x 2 , 1 ) , ⋯ (x_1,0),(x2,1),\dotsb (x1,0),(x2,1),⋯
其中标签值为0表示红色点,为1表示黑色点。
目标:我们将所有的 x i x_i xi丢到模型里面,模型给出的标签值可以和训练集的标签值尽量一致。
那么我们如何找到这个模型 h h h呢?
Solution 解决办法
平面,直线,你想到了我们之前学过的什么东西?没错,线性规划。
所有的红色点和黑色点都对应一个约束条件,而我们的目标是寻找可行域。
实际上我们会有无数条直线满足上面的约束条件,我们如何定义其中最好的一条决定了我们如何训练模型。我们给出的答案是,有**最大边界(maximum margin)**的一条直线。也就是说,所有的点到直线的距离都大于一个常数 σ \sigma σ,这个 σ \sigma σ就是边界。
上面的最优化模型也有一个名称:支持向量机(support vector machine,SVM)
我们使用二分搜索来确定 σ \sigma σ,而对于每一个 σ \sigma σ我们解一个线性规划即可。
Numerical output example: linear regression 数值输出:线性回归
在更多的情况下,我们需要返回一个预测值,一个常见的例子就是线性回归。
我们定义了一系列训练集 ( x i , y i ) (x_i,y_i) (xi,yi)和损失函数 L ( h ) = 1 n Σ ( < x i , h > − y i ) 2 L(h) = \frac{1}{n}\Sigma(<x_i,h> - y_i)^2 L(h)=n1Σ(<xi,h>−yi)2,
模型生成之后我们给出测试集 x ∗ x* x∗,模型给出预测值 y ∗ y* y∗。损失函数计算预测值和实际值的垂直距离,使得模型可以持续优化。
如何找到线性回归的模型呢?前面我们提到的梯度下降是一个好方法。
我们回忆一下梯度下降的方法:
- 选择初始点 h 0 h_0 h0,步数 T T T和学习率 η \eta η。
- 在每步迭代中,计算当前点的梯度,并且迭代点 h i + 1 = h i − η ∇ L ( h ) h_{i+1} = h_i -\eta \nabla L(h) hi+1=hi−η∇L(h)
- 最后输出 1 T Σ h i \frac{1}{T}\Sigma h_i T1Σhi
(或者直接输出 h T h_T hT)
我们发现 L ( h ) L(h) L(h)具有一个很好的性质:由于 x 2 x^2 x2是凸函数,因此其线性组合也是凸的。所以我们可以在这个问题中使用梯度下降法。
另外一个问题是: L ( h ) L(h) L(h)的梯度是什么?
要解决这个问题,我们需要关注损失函数 f i f_i fi的梯度:
∇ f i = ( < h , x i > − y i ) 2 \nabla f_i = (<h,x_i>-y_i)^2 ∇fi=(<h,xi>−yi)2
由于链式法则,令 z = < h , x i > − y i z = <h,x_i>-y_i z=<h,xi>−yi,那么有
d f i d h j = d f i d z d z d h d f i d z = 2 z d z d h = x i , j \frac{df_i}{dh_j} = \frac{df_i}{dz}\frac{dz}{dh} \\ \frac{df_i}{dz} = 2z \\ \frac{dz}{dh} = x_{i,j} dhjdfi=dzdfidhdzdzdfi=2zdhdz=xi,j
因此
d f i d h = 2 ( < h j , x i , j > − y i ) x i , j \frac{df_i}{dh} = 2 (<h_j,x_{i,j}>-y_i)x_{i,j} dhdfi=2(<hj,xi,j>−yi)xi,j
因此求和一下就得出损失函数的梯度:
∇ L ( h ) = 2 n < ( Σ < h 1 , x t , 1 > − y t ) x t , 1 , Σ ( < h 2 , x t , 2 > − y t ) x t , 2 , ⋯ > \nabla L(h) = \frac{2}{n} < (\Sigma<h_1,x_{t,1}>-y_t)x_{t,1},\Sigma (<h_2,x_{t,2}>-y_t)x_{t,2},\dots> ∇L(h)=n2<(Σ<h1,xt,1>−yt)xt,1,Σ(<h2,xt,2>−yt)xt,2,⋯>
Overfitting 过拟合
过拟合是机器学习中一种另外的状况,这种情况下模型为了贴合数据而变得十分奇怪且复杂。这一样也是我们不希望看到的。如下图所示:

也就是说,我们希望我们的模型要好,而且要直观简单,要有鲁棒性。我们有什么方法来保证鲁棒性吗?
一种简单的方法是,控制模型 h h h的范数。由前一小节我们看到,预测结果由 h i x t , i h_ix_{t,i} hixt,i控制,也就是说当 h i h_i hi的范数很大时,单个数据的变化就会对整体造成很大的影响,这是我们不希望看到的。反过来看,控制模型的范数也就减小了单个数据的整体影响,提高了鲁棒性。
Ridge Regression 岭回归算法
岭回归算法在原来 L ( h ) L(h) L(h)的基础上添加了一项正则项(regularization),使得新的损失函数变为:
L ( h ) = 1 n Σ ( < h , x > − y ) 2 + λ ∣ ∣ h ∣ ∣ 2 L(h) = \frac{1}{n}\Sigma(<h,x>-y)^2 + \lambda||h||^2 L(h)=n1Σ(<h,x>−y)2+λ∣∣h∣∣2
在这个损失函数中,我们将模型的范数也加入考虑,在欠拟合和过拟合之间做出了平衡。
由于两个平方项都是凸的,因此新的损失函数很明显也是凸的。
Stochastic Gradient Descent SGD 随机梯度下降
另外一个问题在于,当训练数据量很大的时候,损失函数的计算就会变得十分缓慢,这种情况应该怎么办呢?
如果我们随机取一个样本点,并且用这个样本点直接代表 L ( h ) L(h) L(h),我们的计算量就只有这些点了,对吧?其实这种方法是有一定道理的,因为
E ( ∇ L ′ ) = 1 n ∑ f i = ∇ L ( h ) E(\nabla L') = \frac{1}{n}\sum f_i = \nabla L(h) E(∇L′)=n1∑fi=∇L(h)
所以这种方法是无偏的。
假设我们随机采样 b b b个点(这个值被称为批大小(batch size)),并且定义损失函数为
∇ ^ L ( h ) = 1 b ∑ i f i \widehat{\nabla} L(h)=\frac{1}{b}\sum_i f_i ∇ L(h)=b1i∑fi
也就是说,当 b = n b=n b=n时,这种方法是GD(梯度下降法);当 b = 1 b=1 b=1时,这种方法是SGD(随机梯度下降法)。
随机取一个训练样本是有风险的,估计出来的模型可能是不准确的,而且一般需要更多的迭代步骤。但是如果 n n n数量过大,这种开销比起每步计算 n n n次要好上很多。这是一个方差和时间的权衡。
Matrix Acceleration 矩阵加速计算
我们将变量看作一个矩阵 x 1 x 2 . . . x n \begin {matrix} \bold{x_1}\\ \bold{x_2}\\ ...\\ \bold{x_n} \end{matrix} x1x2...xn,这是一个 n × d n\times d n×d矩阵,然后和 d × 1 d \times 1 d×1模型向量 h 相乘 \bold{h}相乘 h相乘得到最终结果 y \bold{y} y,我们要计算 min ∣ ∣ X ⋅ h − y ∣ ∣ 2 \min ||\bold{X}\cdot \bold{h}-\bold{y}||^2 min∣∣X⋅h−y∣∣2。
其实上述矩阵有一个近似解 X T X − 1 y \bold{X^TX}^{-1}\bold{y} XTX−1y,但是在 n n n非常大的时候,求矩阵的转置和逆一样非常的麻烦,怎么办呢?
我们可以先找一个 b × n ( b < < n ) b\times n(b<<n) b×n(b<<n)的稀疏矩阵 S \bold{S} S,然后用 S X \bold{SX} SX代替原来的 X \bold{X} X,这样我们就把前面的矩阵变成了一个小得多的 b × d b\times d b×d矩阵,这个小矩阵求转置和逆就轻松多了。
这种方法和SGD有异曲同工之妙,矩阵 S \bold{S} S类似于一种随机采样矩阵,计算出来的 b × d b\times d b×d矩阵就好像从 n n n个样本点中采样 b b b个。
Feedforward Neural Network 前馈神经网络
前馈神经网络是一种最简单的神经网络。他的结构是一个分层图,每层有节点,每层节点和下一层的节点之间有加权的边连接。如下图所示:

对于每层的节点,我们将所有的输入边加权作为总的输入,然后处理则使用一个非线性的函数得出本节点的输出,这个函数被称为激活函数。激活函数在不同的情况下一般不同,但是有一种比较常见的函数叫做整流线性单元(ReLU)函数,另外一种函数叫做Sigmoid函数。
OK,根据上面的说法,神经网络包含输入,加权,和每个节点的处理。关于输入和处理我们都给出了具体的例子,但是我们仅仅通过SGD减少了计算的样本数量,并没有实际的加快梯度的计算。这就是我们下节课要介绍的方法:反向传播(Back Propagation)。
相关文章:
大数据机器学习算法和计算机视觉应用07:机器学习
Machine Learning Goal of Machine LearningLinear ClassificationSolutionNumerical output example: linear regressionStochastic Gradient DescentMatrix Acceleration Goal of Machine Learning 机器学习的目标 假设现在有一组数据 x i , y i {x_i,y_i} xi,yi&…...
基于asp.net游乐园管理系统设计与实现
博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…...
一区牛顿-拉夫逊算法+分解+深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测
一区牛顿-拉夫逊算法分解深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测 目录 一区牛顿-拉夫逊算法分解深度学习!VMD-NRBO-Transformer-GRU多变量时间序列光伏功率预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.中科院一区…...
uniapp使用腾讯地图接口的时候提示此key每秒请求量已达到上限或者提示此key每日调用量已达到上限问题解决
要在创建的key上添加配额 点击配额之后进入分配页面,分配完之后刷新uniapp就可以调用成功了。...
WPF 完美解决改变指示灯的颜色
WPF 完美解决改变指示灯的颜色 原有:自己再做WPF页面设计后发现直接去查找页面多个控件嵌套情况下找不到指示灯(Button实现的,详细可以看这篇文章 这里),具体看看来如何实现 加粗样式思路:无论多级嵌套&a…...
Flutter/Dart:使用日志模块Logger Easier
Flutter笔记 Flutter/Dart:使用日志模块Logger Easier Logger Easier 是一个为 Dart 和 Flutter 应用程序量身定制的现代化日志管理解决方案。它提供了一个高度灵活、功能丰富的日志记录系统,旨在简化开发者的日志管理工作,同时提供一定的定制…...
阿里云云服务器初始化
如果我们的云服务器出现无法挽回的错误时,我们可以尝试初始化云服务器进行解决。 首先搜索阿里云(你要先确认自己已经购买了阿里云的云服务器): 登录账号后主页向下划 进入后点击管理控制台 点击进入后可以看到正在运行࿰…...
Python中SKlearn的K-means使用详解
文章目录 Python中SKlearn的K-means使用详解一、引言二、K-means算法原理三、使用SKlearn进行K-means聚类的步骤1、导入必要的库2、生成数据集3、创建K-means模型并设置参数4、训练模型5、预测簇标签6、可视化结果 四、总结 Python中SKlearn的K-means使用详解 一、引言 K-mea…...
红帽RHCE认证适用哪些人学习
红帽 RHCE工程师认证有着广泛的适用人群。对于初入 IT 行业的新手来说,RHCE 是快速建立专业基础、提升自身竞争力的绝佳途径。它能帮助新人系统地学习 Linux 系统知识,从基础的安装配置到复杂的网络服务管理,一步一个脚印地构建起坚实的技术框…...
FFmpeg 框架简介和文件解复用
文章目录 ffmpeg框架简介libavformat库libavcodec库libavdevice库 复用(muxers)和解复用(demuxers)容器格式FLVScript Tag Data结构(脚本类型、帧类型)Audio Tag Data结构(音频Tag)V…...
《Java核心技术I》Swing中的边框
边框 BorderFactory静态方法创建边框,凹斜面,凸斜面,蚀刻,直线,蒙版,空白。 边框添加标题,BorderFactory.createTitledBorder 组合边框,BorderFactory.createCompoundBorder JCo…...
MySQL 中的常见错误与排查
在 MySQL 数据库的日常运维中,管理员可能会遇到各种错误。无论是查询性能问题、连接异常、数据一致性问题,还是磁盘空间不足等,及时排查并解决这些问题是保证数据库稳定运行的关键。本文将列出 MySQL 中一些常见的错误及其排查方法。 一、连接…...
SQL 查询方式比较:子查询与自连接
在 SQL 中,子查询和自连接是两种常见的查询方式,它们的功能虽然可以相同,但实现的方式不同。本文通过具体示例,深入探讨这两种查询方式,并配合数据展示,帮助大家理解它们的使用场景和差异。 数据示例 假设…...
Linux下学【MySQL】所有常用类型详解( 配实操图 通俗易懂 )
每日激励:“当你觉得你会幸运时,幸运就会眷顾你,所以努力吧,只要你把事情做好,并觉得你会幸运,你将会变得幸运且充实。” 绪论: 本章继续学习MySQL的知识,本章主要讲到mysql中的所…...
Gin-vue-admin(1):环境配置和安装
目录 环境配置如果443网络连接问题,需要添加代理服务器 后端运行前端运行 环境配置 git clone https://gitcode.com/gh_mirrors/gi/gin-vue-admin.git到server文件目录下 go mod tidygo mod tidy 是 Go 语言模块系统中的一个命令,用于维护 go.mod 文件…...
如何在centos系统上挂载U盘
在CentOS上挂载NTFS格式的U盘,需要执行一系列步骤,包括识别U盘设备、安装必要的软件、创建挂载点,并最终挂载U盘。以下是在CentOS上挂载NTFS格式U盘的详细步骤: 一、准备工作 确认CentOS版本: 确保你的CentOS系统已经安装并正常运行。不同版本的CentOS在命令和工具方面可能…...
2024年12月大语言模型最新对比:GPT-4、Claude 3、文心一言等详细评测
前言 随着人工智能技术的快速发展,大语言模型(LLM)已经成为了技术领域最热门的话题。本文将详细对比目前主流的大语言模型,帮助大家选择最适合的工具。 一、OpenAI GPT系列 1. GPT-4 核心优势: 多模态理解能力强 逻辑推理能力出色 创造…...
openjdk17 从C++视角看 String的intern的jni方法JVM_InternString方法被gcc编译器连接
symbols-unix 文件部分内容 JVM_IHashCode JVM_InitClassName JVM_InitStackTraceElement JVM_InitStackTraceElementArray JVM_InitializeFromArchive JVM_InternString 要理解在 symbols-unix 文件中包含 JVM_InternString 方法的原因,我们需要从构建过程、符号…...
day16 python(4)——UnitTest
【没有所谓的运气🍬,只有绝对的努力✊】 目录 1、UnitTest框架介绍 1.1 UnitTest框架 1.2 unitTest的组成(5部分) 1.2.1 TestCase(测试用例) 1.2.2 TestSuit 和 TestRunner 【方法1】 【方法2】 1…...
Kafka快速扫描
Architecture 系统间解耦,异步通信,削峰填谷 Topic 消息主题,用于存储消息 Partition 分区,通过扩大分区,可以提高存储量 Broker 部署Kafka服务的设备 Leader kafka主分区 Follwer kafka从分区 高性能之道:…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
