当前位置: 首页 > news >正文

pytorch MoE(专家混合网络)的简单实现。

专家混合(Mixture of Experts, MoE)是一种深度学习模型架构,通常用于处理大规模数据和复杂任务。它通过将输入分配给多个专家网络(即子模型),然后根据门控网络(gating network)的输出对这些专家的输出进行组合,从而充分利用各个专家的特长。

在PyTorch中实现一个专家混合的多层感知器(MLP)需要以下步骤:

  1. 定义专家网络(Experts)。
  2. 定义门控网络(Gating Network)。
  3. 将专家网络和门控网络结合,形成完整的MoE模型。
  4. 训练模型。

以下是一个简单的PyTorch实现示例:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass Expert(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(Expert, self).__init__()self.fc1 = nn.Linear(input_dim, hidden_dim)self.fc2 = nn.Linear(hidden_dim, output_dim)def forward(self, x):x = F.relu(self.fc1(x))x = self.fc2(x)return xclass GatingNetwork(nn.Module):def __init__(self, input_dim, num_experts):super(GatingNetwork, self).__init__()self.fc = nn.Linear(input_dim, num_experts)def forward(self, x):gating_weights = F.softmax(self.fc(x), dim=-1)return gating_weightsclass MixtureOfExperts(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim, num_experts):super(MixtureOfExperts, self).__init__()self.experts = nn.ModuleList([Expert(input_dim, hidden_dim, output_dim) for _ in range(num_experts)])self.gating_network = GatingNetwork(input_dim, num_experts)def forward(self, x):gating_weights = self.gating_network(x)expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=-1)mixed_output = torch.sum(gating_weights.unsqueeze(-2) * expert_outputs, dim=-1)return mixed_output# 定义超参数
input_dim = 10
hidden_dim = 20
output_dim = 1
num_experts = 4# 创建模型
model = MixtureOfExperts(input_dim, hidden_dim, output_dim, num_experts)# 打印模型结构
print(model)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 示例输入和目标
inputs = torch.randn(5, input_dim)  # 5个样本,每个样本10维
targets = torch.randn(5, output_dim)  # 5个目标,每个目标1维# 训练步骤
model.train()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()print(f'Loss: {loss.item()}')

代码解释

  1. Expert类:定义了每个专家网络,这里是一个简单的两层MLP。
  2. GatingNetwork类:定义了门控网络,它将输入映射到每个专家的权重上,并通过softmax确保权重和为1。
  3. MixtureOfExperts类:结合了专家网络和门控网络。对于每个输入,它首先通过门控网络计算权重,然后对每个专家的输出进行加权求和。
  4. 模型创建和训练:定义了输入维度、隐藏层维度、输出维度和专家数量。创建了模型实例,定义了损失函数和优化器,并展示了一个简单的训练步骤。

这个实现是一个简单的示例,可以根据实际需求进行扩展和优化,比如添加更多的层、正则化、更复杂的门控机制等。

相关文章:

pytorch MoE(专家混合网络)的简单实现。

专家混合(Mixture of Experts, MoE)是一种深度学习模型架构,通常用于处理大规模数据和复杂任务。它通过将输入分配给多个专家网络(即子模型),然后根据门控网络(gating network)的输出…...

虚拟机VMware的安装问题ip错误,虚拟网卡

要么没有虚拟网卡、有网卡远程连不上等 一般出现在win11 家庭版 1、是否IP错误 ip addr 2、 重置虚拟网卡 3、查看是否有虚拟网卡 4、如果以上检查都解决不了问题 如果你之前有vmware 后来卸载了,又重新安装,一般都会有问题 卸载重装vmware: 第一…...

Linux下基于最新稳定版ESP-IDF5.3.2开发esp32s3入门hello world输出【入门一】

开发环境搭建:Linux-Ubuntu下搭建ESP32的开发环境的步骤,使用乐鑫最新稳定版的esp-idf-CSDN博客 一、安装好开发环境后,在esp目录下再创建一个esp32的目录【用于编程测试demo】 二、进入esp32目录,打开终端【拷贝esp-idf的hello工…...

重温设计模式--命令模式

文章目录 命令模式的详细介绍C 代码示例C代码示例2 命令模式的详细介绍 定义与概念 命令模式属于行为型设计模式,它旨在将一个请求封装成一个对象,从而让你可以用不同的请求对客户端进行参数化,将请求的发送者和接收者解耦,并且能…...

电力通信规约-104实战

电力通信规约-104实战 概述 104规约在广泛应用于电力系统远动过程中,主要用来进行数据传输和转发,本文将结合实际开发实例来讲解104规约的真实使用情况。 实例讲解 因为个人技术栈是Java,所以本篇将采用Java实例来进行讲解。首先我们搭建一…...

什么是事务

在数据库管理系统中,事务(Transaction)是执行一系列操作的最小工作单元,这些操作要么全部成功,要么全部失败。为了确保数据的一致性和完整性,事务被设计为具备四大特性,即原子性(Ato…...

数据结构:双向循坏链表

目录 1.1双向循环链表的结构 2.双向链表功能的实现 2.1初始化链表 2.2销毁链表 2.3创建结点 2.4打印链表 2.5链表查找 2.6链表在pos的前面进行插入 2.7链表删除pos位置的节点 2.8链表的头插,头删 ,尾插,尾删 1.1双向循环链表的结构 …...

3.1、SDH的5种标准容器

1、定义与作用 在 SDH(同步数字体系)中,标准容器(C)是一种用来装载各种速率的 PDH(准同步数字系列)信号的信息结构。它的主要作用是进行速率适配,使不同速率的 PDH 信号能够在 SDH 的…...

Jenkins介绍

Jenkins 是一款流行的开源自动化服务器,在软件开发和持续集成 / 持续交付(CI/CD)流程中发挥着关键作用。 一、主要功能 1.持续集成(CI) (1).自动构建:Jenkins 可以配置为监听代码仓…...

5G学习笔记之Non-Public Network

目录 0. NPN系列 1. 概述 2. SNPN 2.1 SNPN概述 2.2 SNPN架构 2.3 SNPN部署 2.3.1 完全独立 2.3.2 共享PLMN基站 2.3.3 共享PLMN基站和PLMN频谱 3. PNI-NPN 3.1 PNI-NPN概述 3.2 PNI-NPN部署 3.2.1 UPF独立 3.2.2 完全共享 0. NPN系列 1. NPN概述 2. NPN R18 3. 【SNPN系列】S…...

网页生成鸿蒙App

如何网页生成鸿蒙App 纯鸿蒙发布后,鸿蒙App需求上升。如何快速生成鸿蒙App。变色龙云(http://www.appbsl.cn)推出了鸿蒙App打包服务。可以在线自动打包鸿蒙App。 第一步 创建应用 输入网站网址,上传图标。 第二步 生成鸿蒙证书 打开华为开发者管理中…...

JavaWeb通过Web查询数据库内容:(pfour_webquerymysql)

JavaWeb通过Web查询数据库内容: 数据库: 自行建库建表,主键 id 后端: 新建项目模块选择模块,添加依赖创建配置文件: db.propertiesJava类: query查询 前端: Web添加创建query.html…...

将java项目部署到linux

命令解析 Dockerfile: Dockerfile 是一个文本文件,包含了所有必要的指令来组装(build)一个 Docker 镜像。 docker build: 根据 Dockerfile 或标准指令来构建一个新的镜像。 docker save: 将本地镜像保存为一个 tar 文件。 docker load: 从…...

moviepy将图片序列制作成视频并加载字幕 - python 实现

DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” -------------------------------------------------------------…...

ROS1入门教程5:简单行为处理

一、新建项目 # 创建工作空间 mkdir -p demo5/src && cd demo5# 初始化工作空间 catkin_make# 创建功能包 cd src catkin_create_pkg demo roscpp actionlib_msgs message_generation tf 二、创建行为 # 创建行为目录 mkdir action && cd action# 创建行为文…...

Vue:实现输入框不能输负数功能

1、使用v-model指令 <input type"number" v-model"value" min"0" input"checkInput"> checkInput() {this.value Math.max(0, parseInt(this.value)); } 2、使用计算属性 <template><div><input type"…...

管理系统、微信小程序类源码文档-哔哩哔哩教程同步

文章目录 前言通用表基于JavaSpringBootVue前后端分离手机销售商城系统设计实现:基于JavaSpringBootVueuniapp实现大学生校园兼职微信小程序更新中。。。评论区打出你的题目 &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f388;欢迎踏入我的博客世界&#xff0c;能…...

AOP切点表达式之方法表达式execution

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

clickhouse-题库

1、clickhouse介绍以及架构 clickhouse一个分布式列式存储数据库&#xff0c;主要用于在线分析查询 2、列式存储和行式存储有什么区别&#xff1f; 行式存储&#xff1a; 1&#xff09;、数据是按行存储的 2&#xff09;、没有建立索引的查询消耗很大的IO 3&#xff09;、建…...

在 Sanic 应用中使用内存缓存管理 IP 黑名单

[外链图片转存中…(img-Pm0K9mzd-1734859380698)] 在现代 web 应用中&#xff0c;保护 API 接口免受恶意请求的攻击至关重要。IP 黑名单是一种常见的安全措施&#xff0c;可以有效阻止某些 IP 地址的访问。本文将介绍如何在 Python 的 Sanic 框架中实现 IP 黑名单功能&#xf…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...