当前位置: 首页 > news >正文

深入解析:Python中的决策树与随机森林

在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。

引言

决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其平均结果来提高预测的准确性和鲁棒性。这两种算法在金融风险评估、医疗诊断、市场营销等多个领域都有着广泛的应用。

基础语法介绍

决策树的核心概念

决策树的基本思想是从根节点开始,根据某个属性的最佳分割点进行数据划分,递归地建立子树,直到满足停止条件(如所有子节点属于同一类别)。在Python中,我们通常使用scikit-learn库来实现决策树。下面是一些核心概念:

  • 节点:决策树中的每个点称为节点。
  • 根节点:最顶层的节点,没有父节点。
  • 内部节点:具有一个父节点和两个或更多子节点的节点。
  • 叶节点:没有子节点的节点,通常用于表示预测结果。
  • 分支:从一个节点到另一个节点的路径。

随机森林的核心概念

随机森林通过构建多个决策树,并将这些树的结果进行投票或平均,从而得到最终的预测结果。这种方法可以显著减少过拟合的风险,并提高模型的稳定性。在scikit-learn中,随机森林的实现也非常简单。

基础实例

问题描述

假设我们有一个简单的数据集,包含学生的年龄、性别和成绩,目标是预测学生是否会被录取。我们将使用决策树和随机森林来解决这个问题。

代码示例

首先,我们需要导入必要的库并准备数据集:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score# 准备数据集
data = {'Age': [22, 25, 30, 28, 24, 27],'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Female'],'Score': [85, 90, 78, 88, 92, 80],'Admitted': [1, 1, 0, 1, 1, 0]
}df = pd.DataFrame(data)# 将分类变量转换为数值
df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1})# 分割数据集
X = df[['Age', 'Gender', 'Score']]
y = df['Admitted']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

接下来,我们分别使用决策树和随机森林进行训练和预测:

# 决策树
dt_model = DecisionTreeClassifier()
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print(f"Decision Tree Accuracy: {dt_accuracy}")# 随机森林
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predictions)
print(f"Random Forest Accuracy: {rf_accuracy}")

进阶实例

问题描述

假设我们有一个更复杂的数据集,包含多个特征和大量的样本,目标是预测房价。我们将使用决策树和随机森林来处理这个高维数据集,并优化模型的性能。

高级代码实例

首先,我们导入必要的库并准备数据集:

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

接下来,我们分别使用决策树和随机森林进行训练和预测,并进行超参数调优:

# 决策树
dt_model = DecisionTreeRegressor(random_state=42)
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
dt_mse = mean_squared_error(y_test, dt_predictions)
print(f"Decision Tree MSE: {dt_mse}")# 随机森林
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
rf_mse = mean_squared_error(y_test, rf_predictions)
print(f"Random Forest MSE: {rf_mse}")# 超参数调优
from sklearn.model_selection import GridSearchCVparam_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20, 30],'min_samples_split': [2, 5, 10]
}grid_search = GridSearchCV(RandomForestRegressor(random_state=42), param_grid, cv=5, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
best_rf_model = grid_search.best_estimator_
best_rf_predictions = best_rf_model.predict(X_test)
best_rf_mse = mean_squared_error(y_test, best_rf_predictions)
print(f"Best Random Forest MSE: {best_rf_mse}")

实战案例

问题描述

假设你是一家银行的数据科学家,需要构建一个模型来预测客户的信用评分。数据集包含客户的个人信息、财务状况和历史交易记录。我们将使用决策树和随机森林来解决这个问题,并展示如何在实际项目中应用这些算法。

解决方案

首先,我们导入必要的库并准备数据集:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
data = pd.read_csv('credit_data.csv')# 数据预处理
data = data.dropna()  # 删除缺失值
X = data.drop(['Credit_Score'], axis=1)
y = data['Credit_Score']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

接下来,我们分别使用决策树和随机森林进行训练和预测:

# 决策树
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print(f"Decision Tree Accuracy: {dt_accuracy}")
print(classification_report(y_test, dt_predictions))# 随机森林
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predictions)
print(f"Random Forest Accuracy: {rf_accuracy}")
print(classification_report(y_test, rf_predictions))

代码实现

# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
data = pd.read_csv('credit_data.csv')# 数据预处理
data = data.dropna()  # 删除缺失值
X = data.drop(['Credit_Score'], axis=1)
y = data['Credit_Score']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 决策树
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print(f"Decision Tree Accuracy: {dt_accuracy}")
print(classification_report(y_test, dt_predictions))# 随机森林
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predictions)
print(f"Random Forest Accuracy: {rf_accuracy}")
print(classification_report(y_test, rf_predictions))

扩展讨论

模型解释性

决策树的一个重要优点是其解释性强。通过可视化决策树,我们可以清楚地看到每个节点的分裂条件和路径,这对于业务理解和模型调试非常有帮助。然而,随机森林由于是由多个决策树组成的,其解释性相对较弱。尽管如此,我们可以通过特征重要性来了解哪些特征对模型的预测贡献最大。

模型性能

在大多数情况下,随机森林的性能优于单个决策树。这是因为随机森林通过集成多个决策树,减少了过拟合的风险,并提高了模型的泛化能力。然而,这也意味着随机森林的训练时间和内存消耗会更高。

特征选择

在实际应用中,特征选择是一个重要的步骤。通过选择最相关的特征,可以提高模型的性能并减少计算资源的消耗。scikit-learn提供了多种特征选择的方法,例如递归特征消除(RFE)和基于模型的特征选择。

模型调优

超参数调优是提升模型性能的关键步骤。常用的调优方法包括网格搜索(Grid Search)和随机搜索(Random Search)。通过这些方法,我们可以找到最佳的超参数组合,从而获得更好的模型性能。

总结

决策树和随机森林是机器学习中非常强大且实用的算法。通过本文的介绍,相信读者已经对这两种算法有了更深入的了解。无论是初学者还是高级开发者,都可以在实际项目中灵活运用这些技术,解决各种复杂的问题。希望本文能为你的机器学习之旅提供一些有价值的参考。

相关文章:

深入解析:Python中的决策树与随机森林

在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战&a…...

奇怪问题| Chrome 访问csdn 创作中心的时候报错: 服务超时,请稍后重试

Chrome 访问csdn 创作中心的时候报错: 服务超时,请稍后重试用无痕浏览器可以正常访问 关闭代理无效清缓存和Cookies无效。考虑无痕浏览器模式下插件不生效,尝试把chrome 插件也禁用,发现有效,是该扩展程序的缘故...

【Leetcode】1705. 吃苹果的最大数目

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接🔗 有一棵特殊的苹果树,一连 n n n 天,每天都可以长出若干个苹果。在第 i i i 天,树上会长出 a p p l e s [ i ] apples[i] apples[i] 个苹果&a…...

职业技能赛赛后心得

这是一位粉丝所要求的,也感谢这位粉丝对我的支持。 那么本篇文章我也是分成四个部分,来总结一下这次赛后心得。 赛中问题 那么这里的赛中问题不会只包含我所遇到的问题,也会包含赛中其他选手出现的问题。 那么首先我先说一下我在赛中遇到的…...

从AI换脸到篡改图像,合合信息如何提升视觉内容安全?

本文目录 引言一、AI“真假之战”下的发展现状与考验挑战1.1 视觉内容安全现状与技术分类1.2视觉内容安全企业1.3视觉内容安全领域挑战 二、开山之石:引领视觉内容安全的创新之路2.1合合内容安全系统2.2发起编制相关技术规范2.3参与篡改检测挑战赛 三、视觉内容安全…...

c# 实现一个简单的异常日志记录(异常迭代+分片+定时清理)+AOP Rougamo全局注入

1. 日志目录和文件管理 日志目录:日志文件存储在 ./Exceptions 目录下。日志文件命名:日志文件的命名格式为 yyyy_MM_dd.log,表示当天的日期。如果当天的日志文件大小超过 maxFileSizeBytes(3KB),则会创建…...

webrtc学习----前端推流拉流,局域网socket版,一对多

提示:局域网socket版,一对多 文章目录 [TOC](文章目录) 前言一、教程二、webrtc工作流程三、推流端四、拉流五、socket服务六、效果七、备注总结 前言 WebRTC(Web Real-Time Communication)是一种实时通讯技术,允许网…...

美国加州房价数据分析01

1.项目简介 本数据分析项目目的是分析美国加州房价数据,预测房价中值。 环境要求: ancondajupyter notebookpython3.10.10 虚拟环境: pandas 2.1.1 numpy 1.26.1 matplotlib 3.8.0 scikit-learn1.3.1 2. 导入并探索数据集 通用的数据分析…...

用Python开启人工智能之旅(四)深度学习的框架和使用方法

第四部分:深度学习的框架和使用方法 用Python开启人工智能之旅(一)Python简介与安装 用Python开启人工智能之旅(二)Python基础 用Python开启人工智能之旅(三)常用的机器学习算法与实现 用Pyt…...

两分钟解决:vscode卡在设置SSH主机,VS Code-正在本地初始化VSCode服务器

问题原因 remote-ssh还是有一些bug的,在跟新之后可能会一直加载初始化SSH主机解决方案 1.打开终端2.登录链接vscode的账号,到家目录下3.找到 .vscode-server文件,删掉这个文件4.重启 vscode 就没问题了...

信号仿真高级工程师面试题

信号仿真高级工程师面试题可能涵盖多个方面,旨在全面评估应聘者的专业知识、技能水平、实践经验和问题解决能力。以下是一些可能的面试题及其简要解析: 一、专业知识与技能 描述你对信号仿真的理解 考察点:对信号仿真基本概念、原理及应用的掌握程度。参考答案:信号仿真是…...

循环和迭代

从更高层次的思维角度来看迭代和循环的区别: 哲学层面: 迭代体现了"螺旋上升"的发展理念,每次迭代都在前一次的基础上有所提升和改进 循环体现了"周而复始"的概念,强调重复相同的过程 思维方式&#xff1a…...

一个简单封装的的nodejs缓存对象

我们在日常编码中,经常会用到缓存,而一个有效的缓存管理,也是大家必不可少的工具。而nodejs没有内置专用的缓存对象,并且由于js的作用域链的原因,很多变量使用起来容易出错,如果用一个通用的缓存管理起来&a…...

【Rust自学】5.3. struct的方法(Method)

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 5.3.1. 什么是方法(Method) 方法和函数类似,也是用fn关键字进行声明,方法也有名称,也有参数&#xff…...

ChatGPT之父:奥尔特曼

奥尔特曼 阿尔特曼一般指萨姆奥尔特曼,他是OpenAI的联合创始人兼首席执行官,被称为“ChatGPT之父”.以下是其具体介绍: 个人经历 1985年4月22日出生于美国芝加哥,8岁学会编程,9岁拥有电脑,对信息技术和互联网产生兴趣.高中就读于约翰巴勒斯中学,后进入斯坦福大学主修计…...

如何在谷歌浏览器中设置桌面快捷方式

在日常使用电脑时,反复在浏览器中输入经常访问的网址不仅耗时,而且降低了工作效率。为了解决这一问题,我们可以通过在主屏幕上创建谷歌浏览器的快捷方式来简化操作。本文将详细介绍如何在Windows和Mac系统中实现这一功能。 一、步骤概述 1. …...

systemverilog中的priority if

1 基本概念 在 SystemVerilog 中,priority - if是一种条件判断结构。它和普通的if - else语句类似,但在条件评估和错误检查方面有自己的特点,主要用于按顺序评估多个条件,并且对不符合预期的情况进行报错。报错如下两点 当所有条件…...

图像处理-Ch2-空间域的图像增强

Ch2 空间域的图像增强 文章目录 Ch2 空间域的图像增强Background灰度变换函数(Gray-level Transformation)对数变换(Logarithmic)幂律变换(Power-Law)分段线性变换函数(Piecewise-Linear)对比度拉伸(Contrast-Stretching)灰度级分层(Gray-level Slicing) 直方图处理(Histogram …...

css 编写注意-1-命名约定

编写按照可维护性、性能和可读性规则: 1.代码组织与结构​​​​​​​ 层次清晰:使用模块化的结构,将样式分块组织。命名规范:采用统一的命名规则(如 BEM、SMACSS)以增强可读性。​​​​​​​ /* BEM …...

虚幻引擎反射机制

在虚幻引擎中,反射系统是一种强大的机制,它允许开发者和引擎本身在运行时获取并操作类、对象、属性和方法的元信息。这个系统是基于UObject(Unreal Engine中所有支持反射的对象的基类)构建的,为游戏开发提供了极大的灵…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...