当前位置: 首页 > news >正文

优化程序中的数据:从代数到向量解

前言

在前文笔者简单介绍了把数据迭代抽象为线性代数,并介绍了空间体、维度等概念。

数据复用

数据复用是一种提高程序执行效率与数据局部性的方法,分为自复用与组复用,

自复用:如果多个迭代访问同一个内存位置,那么称为自复用。

组复用:如果多个迭代访问不同的内存位置,但这些位置存储的是相关的数据,那么称为组复用。

举个例子:

自复用:Z[1][1],每次迭代都访问 Z[1][1] 这个内存位置的数据,这样的访问经常被使用,因为这块内存的数据可能被改变。组复用:Z[1][2], Z[1][3],每次迭代访问不同的内存位置(如 Z[1][2] 和 Z[1][3]),每次通过不同的指令进行访问,但这些位置的数据之间有相关性。

循环中的重复访问

数据复用,就是循环中的重复访问数据,对于数组的遍历,假设每个元素之间都没有依赖关系,那么我们可以直接全部并行执行,在并行的基础上,我们会优先执行具有局部性的数据,因为cache中的数据往往都具有局部性,如果去执行与前面的数据局部性差的数据,很可能这些数据在下一级内存中,这样会浪费CPU时间。

为了优化局部性,我们希望识别访问相同数据或相同cache线的遍历(迭代)。

矩阵的秩与重复迭代

矩阵的秩是线性无关行(或列)的数目,在上文笔者简单介绍了如何将迭代与矩阵等价。

那么在数组的迭代过程中,如果进行了重复的迭代,那么转化为矩阵,也就是多了线性相关行(或列)的数目,而矩阵的秩其实并没有改变。

那么,我们需要找出重复的迭代,并将这些迭代进行密集处理,这样能获得更好的局部性。

找出重复迭代

在前文笔者写过不等式表示出来的矩阵:

|  1  0 |   | i |   >=   | 0 |
| -1  0 | * | j |   >=   | -5 |
| -1  1 |           >=   | 0 |
|  0 -1 |           >=   | -7 |

我们可以把矩阵写成这样:

Fi + f >= 0

这样写,就是一次迭代的访问,同理,再写一次迭代:

Fl + f >= 0

那么,我们可以知道,重复的迭代,就是:

Fi + f = Fl + f
也就是:F(i - l) = 0

这样做,我们就成功把迭代等价问题转为了数学问题。

F(i - l) = 0求解

现在我们已经知道了,满足F(i - l) = 0的两次迭代等价,其中一个对矩阵的秩没有影响,它是多余的,现在,我们的问题是这个等式的求解。

向量与空间体

我们先思考一下,i和l都是向量,那么假设它们的差值为向量v,那么问题就是:

Fv = 0

F是一个矩阵,而且是确定值,它由不等式给出,那么抽象到空间中,它可以表示为一个空间体,

假设这个空间体是平面,那么V,一定就是垂直于这个平面的向量,根据向量的性质我们可以知道它们的相乘结果是0。

现在我们对空间抽象有一些理解了,那么拓展到更高维度,不管F是一个怎样的空间体,v向量空间都会使它们的结果为0,那么把V称之为零空间,我们的目的就是求解出这个零空间,这样我们就会知道那些迭代是等价的。

到这一步就不用再细究了,直接使用matlab或者python进行求解是一个非常不错的选择。

向量解与迭代

假设我们使用matlab等工具求解出v的值为:(这个值是笔者随便乱敲的)

[11]

我们迭代使用的遍历有i和j,那么也就是说:

[i1   - [i2j1]  -  j2]  = [11]

也就是说,在我们迭代遍历数组并使用i和j作为迭代量时,如果这一次的迭代与之后的一次迭代,它们的差值刚好满足向量v的结果,那么它们就是重复迭代。

总结

将数据复用问题转化为重复迭代问题,再引入矩阵转化为代数问题,最后求解出访问相同数据的重复迭代。以上都属于自复用内容,先更这些。

相关文章:

优化程序中的数据:从代数到向量解

前言 在前文笔者简单介绍了把数据迭代抽象为线性代数,并介绍了空间体、维度等概念。 数据复用 数据复用是一种提高程序执行效率与数据局部性的方法,分为自复用与组复用, 自复用:如果多个迭代访问同一个内存位置,那…...

【Web】2024“国城杯”网络安全挑战大赛决赛题解(全)

最近在忙联通的安全准入测试,很少有时间看CTF了,今晚抽点时间回顾下上周线下的题(期末还没开始复习😢) 感觉做渗透测试一半的时间在和甲方掰扯&水垃圾洞,没啥惊喜感,还是CTF有意思 目录 Mountain ez_zhuawa 图…...

基于ceres优化的3d激光雷达开源算法

以下是一些基于CERES优化的开源激光雷达SLAM或相关算法: (1) LOAM (Lidar Odometry And Mapping) 简介: LOAM是一种经典的激光雷达里程计和建图算法,它通过提取特征点(角点和平面点),利用ICP(Iterative Cl…...

【FAQ】HarmonyOS SDK 闭源开放能力 — Vision Kit(2)

1.问题描述: 人脸活体检测返回上一页App由沉浸式变为非沉浸式多了上下安全区域。 解决方案: 检测结束后需要自己去设置沉浸式配置。 2.问题描述: Vision Kit文字识别是本地识别,还是上传至服务器,由服务器来识别文…...

【LeetCode】726、原子的数量

【LeetCode】726、原子的数量 文章目录 一、递归: 嵌套类问题1.1 递归: 嵌套类问题 二、多语言解法 一、递归: 嵌套类问题 1.1 递归: 嵌套类问题 遇到 ( 括号, 则递归计算子问题 遇到大写字母, 或遇到 ( 括号, 则清算历史, 并开始新的记录 记录由两部分组成: 大写字母开头的 …...

VMware虚拟机三种网络工作模式

vmware为我们提供了三种网络工作模式,它们分别是:Bridged(桥接模式)、NAT(网络地址转换模式)、Host-Only(仅主机模式)。 打开vmware虚拟机,我们可以在选项栏的“编辑”下的“虚拟网络编辑器”中看到VMnet0(桥接模式)、VMnet1(仅主机模式)、VMnet8(NAT模式),那…...

14-zookeeper环境搭建

0、环境 java:1.8zookeeper:3.5.6 1、下载 zookeeper下载点击这里。 2、安装 下载完成后解压,放到你想放的目录里。先看一下zookeeper的目录结构,如下图: 进入conf目录,复制zoo_sample.cfg&#xff0…...

[搜广推]王树森推荐系统笔记——矩阵补充最近邻查找

视频合集链接 矩阵补充(工业界不常用) 模型结构 embedding可以把 用户ID 或者 物品ID 映射成向量输入用户ID 和 物品ID,输出向量的内积(一个实数),内积越大说明用户对这个物品越感兴趣模型中的两个embed…...

Unity3D * 粒子特效 * Particle System

(基于阿发教程做的重点笔记) 粒子 用于模拟一些流动的,没有形状的物质,例如 液体,烟雾,火焰,爆炸,魔法等效果 去除粒子外框 particle system 粒子发生器,有1个主模块和22个子模块&#xff0…...

【基础篇】1. JasperSoft Studio编辑器与报表属性介绍

编辑器介绍 Jaspersoft Studio有一个多选项卡编辑器,其中包括三个标签:设计,源代码和预览。 Design:报表设计页面,可以图形化拖拉组件设计报表,打开报表文件的主页面Source:源代码页码&#xff…...

数据结构:算法篇:快速排序;直接插入排序

目录 快速排序 直接插入排序 改良版冒泡排序 快速排序 理解: ①从待排序元素中选定一个基准元素; ②以基准元素将数据分为两部分:(可以将:大于基准元素放左,小于基准元素放右) ③对左半部分…...

WebAPI编程(第一天,第二天)

WebAPI编程(第一天,第二天) day01 - Web APIs 1.1. Web API介绍 1.1.1 API的概念1.1.2 Web API的概念1.1.3 API 和 Web API 总结 1.2. DOM 介绍 1.2.1 什么是DOM1.2.2. DOM树 1.3. 获取元素 1.3.1. 根据ID获取1.3.2. 根据标签名获取元素1.3.…...

查看MySQL存储引擎方法,表操作

修改数据库表存储引擎 show create table dept; show table status from itpux where name s2\G; select * from information_schema.TABLES where table_schemaitpux and table_names3; 查询整个mysql里面存储引擎是innodb/myisam的表 建表时候要写好存储引擎 -- 创建表 -- 表…...

【Python教程】Python3基础篇之Number(数字)

博主介绍:✌全网粉丝21W+,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物联网、机器学习等设计与开发。 感兴趣的可…...

基于openEuler22.09部署OpenStack Yoga云平台(一)

OpenStack Yoga部署 安装OpenStack 一、基础准备 基于OpenStack经典的三节点环境进行部署,三个节点分别是控制节点(controller)、计算节点(compute)、存储节点(storage),其中存储…...

I.MX6U 启动方式详解

一、启动方式选择 BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置 来选择 BOOT 方式。 BOOT_MODE[1:0]的值是可以改变的,有两种方式,一种是改写 eFUSE(熔 丝),一种是修改相应的 GPIO 高低电平。第一种修改 eFUSE 的方式只能修改一次,后面就…...

施耐德变频器ATV320系列技术优势:创新与安全并重

在工业自动化领域,追求高效、安全与智能已成为不可阻挡的趋势。施耐德变频器ATV320系列凭借其强大的设计标准和全球认证,成为能够帮助企业降低安装成本,提高设备性能的创新解决方案。 【全球认证,品质保障】ATV320 系列秉持施耐德…...

系统思考—全局思维

昨天接到一个企业需求,某互联网公司VP希望N-1的核心团队一起学习系统思考,特别是在新业务快速发展的阶段。公司增长势头不错,但如何解决跨部门的协作问题,成为了瓶颈。全局思维就是关键。产品、技术、市场、运营、客服……如何打破…...

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户 查看共享连接 使用net use命令可以查看当前已经建立的共享连接。net use删除共享连接 使用net use * /del 或net use * /delete命令可以删除所有当前的共享连接。net use * /delnet use * /delete如果只想删除…...

如何在谷歌浏览器中启用语音搜索

想象一下,你正在拥挤的地铁上,双手都拿着沉重的购物袋,突然你想搜索附近的咖啡馆。此时如果你能通过语音而不是打字来进行搜索,那将多么的便利!在谷歌浏览器中,启用语音搜索功能就是这么简单而高效&#xf…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

CppCon 2015 学习:REFLECTION TECHNIQUES IN C++

关于 Reflection(反射) 这个概念,总结一下: Reflection(反射)是什么? 反射是对类型的自我检查能力(Introspection) 可以查看类的成员变量、成员函数等信息。反射允许枚…...