当前位置: 首页 > news >正文

nlp新词发现——浅析 TF·IDF

传统nlp任务处理文本及其依赖已有的词表,只有在词表里出现的词才能被识别并加以处理。但这也带来了一些问题:

假设没有词表,如何从文本中发现新词?
随着时间推移,新词会不断出现,固有词表会过时,怎么维护词表?

新词发现(如何判定一个词?)

词相当于一种固定搭配

词的内部应该是稳固的——内部凝固度

词的外部应该是多变的——左右熵
在这里插入图片描述

从词到理解

有了分词能力后,需要利用词来完成对文本的理解;
首先可以想到的,就是从文章里挑选重要词。

何为重要词

假设一个词在某类文本中(假设为A类)出现的次数很多,而在其他类别文本(非A类)出现很少,那么这个词是A类文本的重要词(高权重词)。恒星、黑洞——>天文。
反之,若一个词在很多领域都有出现,则其对于任意类别的重要性都很差。你好、谢谢——> ???

如何从数学角度刻画

一种NLP的经典统计值:TF·IDF
TF:词频,某个词在某类别中出现的次数/该类别的词总数
IDF:逆文档频率。逆文档频率高——>该词很少出现在其他文档。

TF·IDF计算

TF·IDF = TF * IDF
假设有四篇文档,文档中的词用字母替代
A: a b c d a b c d
B: b c b c b c
C: b d b d
D: d d d d d d d d

每个词对于每个类别都会得到一个TF·IDF值
TF·IDF高——>该词对于该领域重要程度高,低则相反

算法特点

1、tfidf的计算非常依赖分词结果,如果分词出错,统计值的意义会大打折扣。
2、每个词,对于每篇文档,有不同的tfidf值,所以不能脱离数据讨论tfidf。
3、如果只有一篇文本,不能计算tfidf。
4、类别数据均衡很重要。
5、容易受各种符号影响,最好做一些预处理。

TFIDF应用——搜索引擎

1、对于已有的所有网页(文本),计算每个网页中词的TFIDF值。
2、对于一个输入query进行分词。
3、对于文档D,计算query中的词在文档D中的TFIDF值总和,作为query和文档的相关性得分。

import jieba
import math
import os
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk
"""
基于tfidf实现简单搜索引擎
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)return tf_idf_dict, corpusdef search_engine(query, tf_idf_dict, corpus, top=3):query_words = jieba.lcut(query)res = []for doc_id, tf_idf in tf_idf_dict.items():score = 0for word in query_words:score += tf_idf.get(word, 0)res.append([doc_id, score])res = sorted(res, reverse=True, key=lambda x:x[1])for i in range(top):doc_id = res[i][0]print(corpus[doc_id])print("--------------")return resif __name__ == "__main__":path = "news.json"tf_idf_dict, corpus = load_data(path)while True:query = input("请输入您要搜索的内容:")search_engine(query, tf_idf_dict, corpus)

TFIDF应用——文本摘要

1、通过计算TFIDF值得到每个文本的关键词
2、将包含关键词多的句子,认为是关键句。
3、挑选若干关键句,作为文本的摘要。

import jieba
import math
import os
import random
import re
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk
"""
基于tfidf实现简单文本摘要
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:assert "\n" not in document["title"]assert "\n" not in document["content"]corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)return tf_idf_dict, corpus#计算每一篇文章的摘要
#输入该文章的tf_idf词典,和文章内容
#top为人为定义的选取的句子数量
#过滤掉一些正文太短的文章,因为正文太短在做摘要意义不大
def generate_document_abstract(document_tf_idf, document, top=3):sentences = re.split("?|!|。", document)#过滤掉正文在五句以内的文章if len(sentences) <= 5:return Noneresult = []for index, sentence in enumerate(sentences):sentence_score = 0words = jieba.lcut(sentence)for word in words:sentence_score += document_tf_idf.get(word, 0)sentence_score /= (len(words) + 1)result.append([sentence_score, index])result = sorted(result, key=lambda x:x[0], reverse=True)#权重最高的可能依次是第10,第6,第3句,将他们调整为出现顺序比较合理,即3,6,10important_sentence_indexs = sorted([x[1] for x in result[:top]])return "。".join([sentences[index] for index in important_sentence_indexs])#生成所有文章的摘要
def generate_abstract(tf_idf_dict, corpus):res = []for index, document_tf_idf in tf_idf_dict.items():title, content = corpus[index].split("\n")abstract = generate_document_abstract(document_tf_idf, content)if abstract is None:continuecorpus[index] += "\n" + abstractres.append({"标题":title, "正文":content, "摘要":abstract})return resif __name__ == "__main__":path = "news.json"tf_idf_dict, corpus = load_data(path)res = generate_abstract(tf_idf_dict, corpus)writer = open("abstract.json", "w", encoding="utf8")writer.write(json.dumps(res, ensure_ascii=False, indent=2))writer.close()

TFIDF应用——文本相似度计算

1、对所有文本计算TFIDF后,从每个文本选取tfidf较高的前n个词,得到一个词的集合S。
2、对于每篇文本D,计算S中的每个词的词频,将其作为文本的向量。
3、通过计算向量夹角余弦值,得到向量相似度,作为文本的相似度。
向量夹角余弦值计算:

#coding:utf8
import jieba
import math
import os
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk"""
基于tfidf实现文本相似度计算
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
#之后统计每篇文档重要在前10的词,统计出重要词词表
#重要词词表用于后续文本向量化
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)topk_words = tf_idf_topk(tf_idf_dict, top=5, print_word=False)vocab = set()for words in topk_words.values():for word, score in words:vocab.add(word)print("词表大小:", len(vocab))return tf_idf_dict, list(vocab), corpus#passage是文本字符串
#vocab是词列表
#向量化的方式:计算每个重要词在文档中的出现频率
def doc_to_vec(passage, vocab):vector = [0] * len(vocab)passage_words = jieba.lcut(passage)for index, word in enumerate(vocab):vector[index] = passage_words.count(word) / len(passage_words)return vector#先计算所有文档的向量
def calculate_corpus_vectors(corpus, vocab):corpus_vectors = [doc_to_vec(c, vocab) for c in corpus]return corpus_vectors#计算向量余弦相似度
def cosine_similarity(vector1, vector2):x_dot_y = sum([x*y for x, y in zip(vector1, vector2)])sqrt_x = math.sqrt(sum([x ** 2 for x in vector1]))sqrt_y = math.sqrt(sum([x ** 2 for x in vector2]))if sqrt_y == 0 or sqrt_y == 0:return 0return x_dot_y / (sqrt_x * sqrt_y + 1e-7)#输入一篇文本,寻找最相似文本
def search_most_similar_document(passage, corpus_vectors, vocab):input_vec = doc_to_vec(passage, vocab)result = []for index, vector in enumerate(corpus_vectors):score = cosine_similarity(input_vec, vector)result.append([index, score])result = sorted(result, reverse=True, key=lambda x:x[1])return result[:4]if __name__ == "__main__":path = "news.json"tf_idf_dict, vocab, corpus = load_data(path)corpus_vectors = calculate_corpus_vectors(corpus, vocab)passage = "魔兽争霸"for corpus_index, score in search_most_similar_document(passage, corpus_vectors, vocab):print("相似文章:\n", corpus[corpus_index].strip())print("得分:", score)print("--------------")

TFIDF的优势

1、可解释性好:
可以清晰地看到关键词,即使预测出错,也很容易就找到原因。
2、计算速度快:
分词本身占耗时最多,其余为简单统计计算
3、对标注数据依赖小
可以使用无标注预料完成一部分工作
4、可以与很多算法组合使用
可以看做是词的权重

TFIDF的劣势

1、受分词效果影响大
2、词与词之间没有语义相似度
3、没有语序信息(词袋模型)
4、能力范围有限,无法完成复杂任务,如机器翻译和实体挖掘等
5、样本不均衡会对结果有很大影响
6、类内样本间分部不被考虑

相关文章:

nlp新词发现——浅析 TF·IDF

传统nlp任务处理文本及其依赖已有的词表&#xff0c;只有在词表里出现的词才能被识别并加以处理。但这也带来了一些问题&#xff1a; 假设没有词表&#xff0c;如何从文本中发现新词&#xff1f; 随着时间推移&#xff0c;新词会不断出现&#xff0c;固有词表会过时&#xff0…...

WebGL2示例项目常见问题解决方案

WebGL2示例项目常见问题解决方案 webgl2examples Rendering algorithms implemented in raw WebGL 2. [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/we/webgl2examples 项目基础介绍 WebGL2示例项目&#xff08;https://github.com/tsherif/webgl2examples.gi…...

鸿蒙元服务从0到上架【第三篇】(第二招有捷径)

第一招&#xff1a;开始发布元服务 AppGallery 上传通过IDE生成的图标&#xff0c;后面按照步骤填写 后台有隐私政策链接生成处&#xff0c;前往填写生成 第二招&#xff1a;用户协议 对于没有服务器或者是需要极速开发的开发者&#xff0c;可通过gitee生成用户协议&…...

Jimureport h2命令执行分析记录

首先找testConnection接口&#xff0c;前面进行了jimureport-spring-boot-starter-1.5.8.jar反编译查找&#xff0c;接口找到发现请求参数是json var1是JmreportDynamicDataSourceVo类型&#xff0c;也就是如上图的dbSource&#xff0c;根据打印的结果可以知道这里是local cac…...

vue 集成 webrtc-streamer 播放视频流 - 解决阿里云内外网访问视频流问题

资料&#xff1a; 史上最详细的webrtc-streamer访问摄像机视频流教程-CSDN博客 webrtc目录 前端集成 html文件夹里的webrtcstreamer.js&#xff0c;集成到前端&#xff0c;可以访问webrtc&#xff0c;转换rtsp为webrtc视频流&#xff0c;在前端video中播放 <videoref&quo…...

进网许可认证、交换路由设备检测项目更新25年1月起

实施时间 2025年1月1日起实施 涉及设备范围 核心路由器、边缘路由器、以太网交换机、三层交换机、宽带网络接入服务器&#xff08;BNAS&#xff09; 新增检测依据 GBT41266-2022网络关键设备安全检测方法交换机设备 GBT41267-2022网络关键设备安全技术要求交换机设备 GB/…...

Provides transitive vulnerable dependency maven 提示依赖存在漏洞问题的解决方法

问题描述 如下图所示&#xff0c;对于 java 项目某些依赖&#xff0c;IDEA 提示&#xff0c;引用了含有漏洞的依赖。如果是单个依赖&#xff0c;可以考虑直接升级版本即可。但是对于传递性依赖&#xff0c;比如 flink 项目中&#xff0c;依赖的部分模块&#xff0c;它们自己依…...

WebAuthn 项目常见问题解决方案

WebAuthn 项目常见问题解决方案 webauthn Webauthn / passkeys helper library to make your life easier. Client side, server side and demo included. [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/webaut/webauthn 项目基础介绍 WebAuthn 项目是一个开源…...

LeetCode 844. 比较含退格的字符串 (C++实现)

1. 题目描述 给定 s 和 t 两个字符串&#xff0c;当它们分别被输入到空白的文本编辑器后&#xff0c;如果两者相等&#xff0c;返回 true 。# 代表退格字符。 注意&#xff1a;如果对空文本输入退格字符&#xff0c;文本继续为空。 示例 1&#xff1a; 输入&#xff1a;s …...

Python8-写一些小作业

记录python学习&#xff0c;直到学会基本的爬虫&#xff0c;使用python搭建接口自动化测试就算学会了&#xff0c;在进阶webui自动化&#xff0c;app自动化 python基础8-灵活运用顺序、选择、循环结构 写一些小练习题目1、给一个半径&#xff0c;求圆的面积和周长&#xff0c;…...

C++ STL vector基本原理和用法

文章目录 基本原理1. 数据存储结构2. 内存管理机制3. 迭代器实现原理4. 元素访问原理5. 插入和删除元素原理 常见用法1. 概述2. 包含头文件3. 定义和初始化4. 常用成员函数5. 迭代器6. 内存管理与性能特点7. 应用场景 基本原理 以下是关于 std::vector 的基本原理讲解&#xf…...

【计算机视觉基础CV-图像分类】05 - 深入解析ResNet与GoogLeNet:从基础理论到实际应用

引言 在上一篇文章中&#xff0c;我们详细介绍了ResNet与GoogLeNet的网络结构、设计理念及其在图像分类中的应用。本文将继续深入探讨如何在实际项目中应用这些模型&#xff0c;特别是如何保存训练好的模型、加载模型以及使用模型进行新图像的预测。通过这些步骤&#xff0c;读…...

【人工智能-初级】基于用户的协同过滤推荐算法

文章目录 1. 数据集2. 实验代码3. 代码解释4. 实验结果5. 评估基于用户的协同过滤算法是一种常见的推荐算法,它的核心思想是根据用户之间的相似性来进行推荐。 实验案例: 使用的是电影推荐数据集 MovieLens,实验中我们会通过用户评分数据计算用户之间的相似性,并使用基于用户…...

如何识别钓鱼邮件和诈骗网站?(附网络安全意识培训PPT资料)

识别钓鱼邮件和诈骗网站是网络安全中的一个重要环节。以下是一些识别钓鱼邮件和诈骗网站的方法&#xff1a; 识别钓鱼邮件&#xff1a; 检查发件人地址&#xff1a; 仔细查看发件人的电子邮件地址&#xff0c;看是否与官方域名一致。 检查邮件内容&#xff1a; 留意邮件中是否…...

Rust 在前端基建中的使用

摘要 随着前端技术的不断发展&#xff0c;前端基础设施&#xff08;前端基建&#xff09;的建设已成为提升开发效率、保障产品质量的关键环节。然而&#xff0c;在应对复杂业务场景与高性能需求时&#xff0c;传统的前端技术栈逐渐暴露出诸多不足。近年来&#xff0c;Rust语言…...

【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和Ope…...

Python 自动化 打开网站 填表登陆 例子

图样 简价&#xff1a; 简要说明这个程序的功能&#xff1a; 1. **基本功能**&#xff1a; - 自动打开网站 - 自动填写登录信息&#xff08;号、公司名称、密码&#xff09; - 显示半透明状态窗口实时提示操作进度 2. **操作流程**&#xff1a; - 打开网站后自动…...

【Chrome】浏览器提示警告Chrome is moving towards a new experience

文章目录 前言一、如何去掉 前言 Chrome is moving towards a new experience that allows users to choose to browse without third-party cookies. 这是谷歌浏览器&#xff08;Chrome&#xff09;关于隐私策略更新相关的提示 提示&#xff1a;以下是本篇文章正文内容&…...

网络下载ts流媒体

网络下载ts流媒体 查看下载排序合并 很多视频网站&#xff0c;尤其是微信小程序中的长视频无法获取到准确视频地址&#xff0c;只能抓取到.ts片段地址&#xff0c;下载后发现基本都是5~8秒时长。 例如&#xff1a; 我们需要将以上地址片段全部下载后排序后再合成新的长视频。 …...

iDP3复现代码模型训练全流程(一)——train_policy.sh

iDP3 核心脚本包括三个&#xff1a;deploy_policy.sh、vis_dataset.sh、train_policy.sh&#xff0c;分别代表了部署、预处理和训练&#xff0c;分别作为对应 py 脚本的参数设置前置环节 训练环节仅需运行指令&#xff1a; # 3d policy bash scripts/train_policy.sh idp3 gr1…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...