nlp新词发现——浅析 TF·IDF
传统nlp任务处理文本及其依赖已有的词表,只有在词表里出现的词才能被识别并加以处理。但这也带来了一些问题:
假设没有词表,如何从文本中发现新词?
随着时间推移,新词会不断出现,固有词表会过时,怎么维护词表?
新词发现(如何判定一个词?)
词相当于一种固定搭配
词的内部应该是稳固的——内部凝固度
词的外部应该是多变的——左右熵
从词到理解
有了分词能力后,需要利用词来完成对文本的理解;
首先可以想到的,就是从文章里挑选重要词。
何为重要词
假设一个词在某类文本中(假设为A类)出现的次数很多,而在其他类别文本(非A类)出现很少,那么这个词是A类文本的重要词(高权重词)。恒星、黑洞——>天文。
反之,若一个词在很多领域都有出现,则其对于任意类别的重要性都很差。你好、谢谢——> ???
如何从数学角度刻画
一种NLP的经典统计值:TF·IDF
TF:词频,某个词在某类别中出现的次数/该类别的词总数
IDF:逆文档频率。逆文档频率高——>该词很少出现在其他文档。
TF·IDF计算
TF·IDF = TF * IDF
假设有四篇文档,文档中的词用字母替代
A: a b c d a b c d
B: b c b c b c
C: b d b d
D: d d d d d d d d
每个词对于每个类别都会得到一个TF·IDF值
TF·IDF高——>该词对于该领域重要程度高,低则相反
算法特点
1、tfidf的计算非常依赖分词结果,如果分词出错,统计值的意义会大打折扣。
2、每个词,对于每篇文档,有不同的tfidf值,所以不能脱离数据讨论tfidf。
3、如果只有一篇文本,不能计算tfidf。
4、类别数据均衡很重要。
5、容易受各种符号影响,最好做一些预处理。
TFIDF应用——搜索引擎
1、对于已有的所有网页(文本),计算每个网页中词的TFIDF值。
2、对于一个输入query进行分词。
3、对于文档D,计算query中的词在文档D中的TFIDF值总和,作为query和文档的相关性得分。
import jieba
import math
import os
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk
"""
基于tfidf实现简单搜索引擎
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)return tf_idf_dict, corpusdef search_engine(query, tf_idf_dict, corpus, top=3):query_words = jieba.lcut(query)res = []for doc_id, tf_idf in tf_idf_dict.items():score = 0for word in query_words:score += tf_idf.get(word, 0)res.append([doc_id, score])res = sorted(res, reverse=True, key=lambda x:x[1])for i in range(top):doc_id = res[i][0]print(corpus[doc_id])print("--------------")return resif __name__ == "__main__":path = "news.json"tf_idf_dict, corpus = load_data(path)while True:query = input("请输入您要搜索的内容:")search_engine(query, tf_idf_dict, corpus)
TFIDF应用——文本摘要
1、通过计算TFIDF值得到每个文本的关键词
2、将包含关键词多的句子,认为是关键句。
3、挑选若干关键句,作为文本的摘要。
import jieba
import math
import os
import random
import re
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk
"""
基于tfidf实现简单文本摘要
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:assert "\n" not in document["title"]assert "\n" not in document["content"]corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)return tf_idf_dict, corpus#计算每一篇文章的摘要
#输入该文章的tf_idf词典,和文章内容
#top为人为定义的选取的句子数量
#过滤掉一些正文太短的文章,因为正文太短在做摘要意义不大
def generate_document_abstract(document_tf_idf, document, top=3):sentences = re.split("?|!|。", document)#过滤掉正文在五句以内的文章if len(sentences) <= 5:return Noneresult = []for index, sentence in enumerate(sentences):sentence_score = 0words = jieba.lcut(sentence)for word in words:sentence_score += document_tf_idf.get(word, 0)sentence_score /= (len(words) + 1)result.append([sentence_score, index])result = sorted(result, key=lambda x:x[0], reverse=True)#权重最高的可能依次是第10,第6,第3句,将他们调整为出现顺序比较合理,即3,6,10important_sentence_indexs = sorted([x[1] for x in result[:top]])return "。".join([sentences[index] for index in important_sentence_indexs])#生成所有文章的摘要
def generate_abstract(tf_idf_dict, corpus):res = []for index, document_tf_idf in tf_idf_dict.items():title, content = corpus[index].split("\n")abstract = generate_document_abstract(document_tf_idf, content)if abstract is None:continuecorpus[index] += "\n" + abstractres.append({"标题":title, "正文":content, "摘要":abstract})return resif __name__ == "__main__":path = "news.json"tf_idf_dict, corpus = load_data(path)res = generate_abstract(tf_idf_dict, corpus)writer = open("abstract.json", "w", encoding="utf8")writer.write(json.dumps(res, ensure_ascii=False, indent=2))writer.close()
TFIDF应用——文本相似度计算
1、对所有文本计算TFIDF后,从每个文本选取tfidf较高的前n个词,得到一个词的集合S。
2、对于每篇文本D,计算S中的每个词的词频,将其作为文本的向量。
3、通过计算向量夹角余弦值,得到向量相似度,作为文本的相似度。
向量夹角余弦值计算:
#coding:utf8
import jieba
import math
import os
import json
from collections import defaultdict
from calculate_tfidf import calculate_tfidf, tf_idf_topk"""
基于tfidf实现文本相似度计算
"""jieba.initialize()#加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
#之后统计每篇文档重要在前10的词,统计出重要词词表
#重要词词表用于后续文本向量化
def load_data(file_path):corpus = []with open(file_path, encoding="utf8") as f:documents = json.loads(f.read())for document in documents:corpus.append(document["title"] + "\n" + document["content"])tf_idf_dict = calculate_tfidf(corpus)topk_words = tf_idf_topk(tf_idf_dict, top=5, print_word=False)vocab = set()for words in topk_words.values():for word, score in words:vocab.add(word)print("词表大小:", len(vocab))return tf_idf_dict, list(vocab), corpus#passage是文本字符串
#vocab是词列表
#向量化的方式:计算每个重要词在文档中的出现频率
def doc_to_vec(passage, vocab):vector = [0] * len(vocab)passage_words = jieba.lcut(passage)for index, word in enumerate(vocab):vector[index] = passage_words.count(word) / len(passage_words)return vector#先计算所有文档的向量
def calculate_corpus_vectors(corpus, vocab):corpus_vectors = [doc_to_vec(c, vocab) for c in corpus]return corpus_vectors#计算向量余弦相似度
def cosine_similarity(vector1, vector2):x_dot_y = sum([x*y for x, y in zip(vector1, vector2)])sqrt_x = math.sqrt(sum([x ** 2 for x in vector1]))sqrt_y = math.sqrt(sum([x ** 2 for x in vector2]))if sqrt_y == 0 or sqrt_y == 0:return 0return x_dot_y / (sqrt_x * sqrt_y + 1e-7)#输入一篇文本,寻找最相似文本
def search_most_similar_document(passage, corpus_vectors, vocab):input_vec = doc_to_vec(passage, vocab)result = []for index, vector in enumerate(corpus_vectors):score = cosine_similarity(input_vec, vector)result.append([index, score])result = sorted(result, reverse=True, key=lambda x:x[1])return result[:4]if __name__ == "__main__":path = "news.json"tf_idf_dict, vocab, corpus = load_data(path)corpus_vectors = calculate_corpus_vectors(corpus, vocab)passage = "魔兽争霸"for corpus_index, score in search_most_similar_document(passage, corpus_vectors, vocab):print("相似文章:\n", corpus[corpus_index].strip())print("得分:", score)print("--------------")
TFIDF的优势
1、可解释性好:
可以清晰地看到关键词,即使预测出错,也很容易就找到原因。
2、计算速度快:
分词本身占耗时最多,其余为简单统计计算
3、对标注数据依赖小
可以使用无标注预料完成一部分工作
4、可以与很多算法组合使用
可以看做是词的权重
TFIDF的劣势
1、受分词效果影响大
2、词与词之间没有语义相似度
3、没有语序信息(词袋模型)
4、能力范围有限,无法完成复杂任务,如机器翻译和实体挖掘等
5、样本不均衡会对结果有很大影响
6、类内样本间分部不被考虑
相关文章:

nlp新词发现——浅析 TF·IDF
传统nlp任务处理文本及其依赖已有的词表,只有在词表里出现的词才能被识别并加以处理。但这也带来了一些问题: 假设没有词表,如何从文本中发现新词? 随着时间推移,新词会不断出现,固有词表会过时࿰…...
WebGL2示例项目常见问题解决方案
WebGL2示例项目常见问题解决方案 webgl2examples Rendering algorithms implemented in raw WebGL 2. [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/we/webgl2examples 项目基础介绍 WebGL2示例项目(https://github.com/tsherif/webgl2examples.gi…...

鸿蒙元服务从0到上架【第三篇】(第二招有捷径)
第一招:开始发布元服务 AppGallery 上传通过IDE生成的图标,后面按照步骤填写 后台有隐私政策链接生成处,前往填写生成 第二招:用户协议 对于没有服务器或者是需要极速开发的开发者,可通过gitee生成用户协议&…...

Jimureport h2命令执行分析记录
首先找testConnection接口,前面进行了jimureport-spring-boot-starter-1.5.8.jar反编译查找,接口找到发现请求参数是json var1是JmreportDynamicDataSourceVo类型,也就是如上图的dbSource,根据打印的结果可以知道这里是local cac…...

vue 集成 webrtc-streamer 播放视频流 - 解决阿里云内外网访问视频流问题
资料: 史上最详细的webrtc-streamer访问摄像机视频流教程-CSDN博客 webrtc目录 前端集成 html文件夹里的webrtcstreamer.js,集成到前端,可以访问webrtc,转换rtsp为webrtc视频流,在前端video中播放 <videoref&quo…...

进网许可认证、交换路由设备检测项目更新25年1月起
实施时间 2025年1月1日起实施 涉及设备范围 核心路由器、边缘路由器、以太网交换机、三层交换机、宽带网络接入服务器(BNAS) 新增检测依据 GBT41266-2022网络关键设备安全检测方法交换机设备 GBT41267-2022网络关键设备安全技术要求交换机设备 GB/…...

Provides transitive vulnerable dependency maven 提示依赖存在漏洞问题的解决方法
问题描述 如下图所示,对于 java 项目某些依赖,IDEA 提示,引用了含有漏洞的依赖。如果是单个依赖,可以考虑直接升级版本即可。但是对于传递性依赖,比如 flink 项目中,依赖的部分模块,它们自己依…...
WebAuthn 项目常见问题解决方案
WebAuthn 项目常见问题解决方案 webauthn Webauthn / passkeys helper library to make your life easier. Client side, server side and demo included. [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/webaut/webauthn 项目基础介绍 WebAuthn 项目是一个开源…...
LeetCode 844. 比较含退格的字符串 (C++实现)
1. 题目描述 给定 s 和 t 两个字符串,当它们分别被输入到空白的文本编辑器后,如果两者相等,返回 true 。# 代表退格字符。 注意:如果对空文本输入退格字符,文本继续为空。 示例 1: 输入:s …...

Python8-写一些小作业
记录python学习,直到学会基本的爬虫,使用python搭建接口自动化测试就算学会了,在进阶webui自动化,app自动化 python基础8-灵活运用顺序、选择、循环结构 写一些小练习题目1、给一个半径,求圆的面积和周长,…...
C++ STL vector基本原理和用法
文章目录 基本原理1. 数据存储结构2. 内存管理机制3. 迭代器实现原理4. 元素访问原理5. 插入和删除元素原理 常见用法1. 概述2. 包含头文件3. 定义和初始化4. 常用成员函数5. 迭代器6. 内存管理与性能特点7. 应用场景 基本原理 以下是关于 std::vector 的基本原理讲解…...

【计算机视觉基础CV-图像分类】05 - 深入解析ResNet与GoogLeNet:从基础理论到实际应用
引言 在上一篇文章中,我们详细介绍了ResNet与GoogLeNet的网络结构、设计理念及其在图像分类中的应用。本文将继续深入探讨如何在实际项目中应用这些模型,特别是如何保存训练好的模型、加载模型以及使用模型进行新图像的预测。通过这些步骤,读…...
【人工智能-初级】基于用户的协同过滤推荐算法
文章目录 1. 数据集2. 实验代码3. 代码解释4. 实验结果5. 评估基于用户的协同过滤算法是一种常见的推荐算法,它的核心思想是根据用户之间的相似性来进行推荐。 实验案例: 使用的是电影推荐数据集 MovieLens,实验中我们会通过用户评分数据计算用户之间的相似性,并使用基于用户…...

如何识别钓鱼邮件和诈骗网站?(附网络安全意识培训PPT资料)
识别钓鱼邮件和诈骗网站是网络安全中的一个重要环节。以下是一些识别钓鱼邮件和诈骗网站的方法: 识别钓鱼邮件: 检查发件人地址: 仔细查看发件人的电子邮件地址,看是否与官方域名一致。 检查邮件内容: 留意邮件中是否…...

Rust 在前端基建中的使用
摘要 随着前端技术的不断发展,前端基础设施(前端基建)的建设已成为提升开发效率、保障产品质量的关键环节。然而,在应对复杂业务场景与高性能需求时,传统的前端技术栈逐渐暴露出诸多不足。近年来,Rust语言…...
【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和Ope…...

Python 自动化 打开网站 填表登陆 例子
图样 简价: 简要说明这个程序的功能: 1. **基本功能**: - 自动打开网站 - 自动填写登录信息(号、公司名称、密码) - 显示半透明状态窗口实时提示操作进度 2. **操作流程**: - 打开网站后自动…...

【Chrome】浏览器提示警告Chrome is moving towards a new experience
文章目录 前言一、如何去掉 前言 Chrome is moving towards a new experience that allows users to choose to browse without third-party cookies. 这是谷歌浏览器(Chrome)关于隐私策略更新相关的提示 提示:以下是本篇文章正文内容&…...

网络下载ts流媒体
网络下载ts流媒体 查看下载排序合并 很多视频网站,尤其是微信小程序中的长视频无法获取到准确视频地址,只能抓取到.ts片段地址,下载后发现基本都是5~8秒时长。 例如: 我们需要将以上地址片段全部下载后排序后再合成新的长视频。 …...

iDP3复现代码模型训练全流程(一)——train_policy.sh
iDP3 核心脚本包括三个:deploy_policy.sh、vis_dataset.sh、train_policy.sh,分别代表了部署、预处理和训练,分别作为对应 py 脚本的参数设置前置环节 训练环节仅需运行指令: # 3d policy bash scripts/train_policy.sh idp3 gr1…...

遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...