科技云报到:人工智能时代“三大件”:生成式AI、数据、云服务
科技云报到原创。
就像自行车、手表和缝纫机是工业时代的“三大件”。生成式AI、数据、云服务正在成为智能时代的“新三大件”。加之全球人工智能新基建加速建设,成为了人类社会数字化迁徙的助推剂,让新三大件之间的耦合越来越紧密。从物理世界到数字世界跨越的分水岭已经出现。
近两年,以大模型为代表的生成式AI技术,成为引爆数字原生最重要的技术奇点,人们见证了各类文生应用的进展速度。Gartner预测,到2026年,超过80%的企业将使用生成式AI的API或模型,或在生产环境中部署支持生成式AI的应用,这也将为产业发展带来巨大的机遇与挑战。
大模型、生成式AI的发展带动了人工智能领域的范式转换,推动人工智能基础设施建设进入密集投入期,投资规模、政策支持力度、产品应用规模均呈指数级增长。未来十年里,所有企业在战略里将充分利用三个原生(云原生、数字原生、AI原生)来颠覆自己的业务,构造自己的第二、第三增长曲线,重新编写自己的业务,在数字化时代实现企业跨越式的增长。
生成式AI在云端绽放盛开
毫无疑问,生成式AI已然成为当今技术发展和应用创新的重要引擎之一。
过去的一年多时间里,我们目睹了生成式AI是如何以移山倒海的力量,为诸多行业带来革命性乃至颠覆性的变革,帮助企业重塑生产力,已经对全球经济产生了显著的影响。
麦肯锡发布的《生成式人工智能的经济潜力:下一波生产力浪潮》报告显示,生成式AI能够大幅提高整个经济体的劳动生产率,每年为全球经济可以带来2.6万亿至4.4万亿美元的增长。
虽然,通用人工智能(AGI)的时代尚未到来,但生成式AI的未来已至,企业IT基础架构随之发生迭代革新。巨大算力增长背后其实是底层服务器、芯片、数据等重要能力的升级,而云正在重塑一切。
大模型如火如荼背后,底层的芯片、到中间的平台再到上层的应用,都与过去大为不同。如果企业继续采用传统的IT架构,CPU和加速器之间的接口会限制产品的性能水平,也就无法更好地支持生成式AI时代的新需求。同时,由AI模型带来的大量资源消耗,也是企业关注的重点问题。所以,满足未来需求的企业架构设计,一定会充分考虑到成本和可持续发展问题。
在中国市场,承载着生成式AI的智算服务正在为云计算塑造新的增长力。IDC最新发布的《中国智算服务市场(2024上半年)跟踪》报告显示,2024年上半年中国智算服务整体市场同比增长79.6%,市场规模达到146.1亿元人民币。其中,智算集成服务市场同比增长168.4%,市场规模达57.0亿元人民币;生成式AI IaaS市场同比增长203.6%,市场规模达52.0亿元人民币;Other AI IaaS市场同比缩减13.7%,市场规模为37.1亿元人民币。
目前,面向生成式AI的算力支出已经成为智算服务市场主阵地。以AI IaaS市场为例,生成式AI IaaS市场经历短短的一年半发展时间,市场规模就已经超过Other AI IaaS市场,占AI IaaS市场的比重达58%。在智算集成市场,增量新建的智算中心均是以生成式AI的未来需求为导向而设计的。
生成式AI不能单独创造价值,其工作负载的计算密集程度非常高,它需要底层更强大的数据和算力服务支持。因此,具有拥有高性价比的基础设施,是应用成功构建的关键要素之一。
另外,智能化系统之所以更具颠覆性,是因为在感知、理解、学习、推理、交互等方面具有更广泛的适应性,以及更友好的多模交互能力。所以,在架构设计上要充分考虑到可行性、可控性和通用性,才能满足多场景、多需求、多任务之间的快速切换。
智能化系统并不是只有一个大模型,架构设计者需要在根据不同业务场景的需求进行偏好对齐,具备多模索引、模型选择、模型算力调度和模型推理的能力。企业也要根据不同业务场景需求,以及不同技术支撑能力,选择适合的智能化架构升级路线。
AI交互的用户友好性、大模型开源及API价格的降低、插件服务带来的应用生态繁荣等,都使得AI技术或将成为像水、电、网络一样的基础设施,渗透并改变千行万业。
根据《2024年AIGC发展趋势报告》显示,在医疗领域,AI应用已能够精准辅助诊断,例如Google Health的深度学习模型,在乳腺癌筛查中的准确率已超越人类专家。利用强大的图像识别和模式分析能力,这些模型可以从成千上万的X光片中识别出极易被人眼忽视的细微变化。
金融领域也经历了由AI推动的变革。金融机构利用复杂的算法来预测市场趋势、管理风险,甚至自动执行交易。机器学习技术能够分析大规模的历史数据,识别出人类难以察觉的模式。例如,通过深度学习,AI可以在高频交易中捕捉到微小的市场变化,并在毫秒级做出反应,这是任何人类交易者所无法比拟的。
自动驾驶领域的AI应用,展示了AI能够在高度复杂和动态的环境中执行任务的能力。特斯拉Autopilot、谷歌Waymo,这些自动驾驶系统使用了先进的传感器阵列和AI算法,实现了车辆的自主导航和决策。它们的表现日益接近人类驾驶者,甚至在某些情境下超越了人类。
如何解锁生成式AI价值?
生成式AI的发展就像一场马拉松,现在还处于非常早期的阶段,不仅是一场长期竞争,更成为全球企业开展技术合作、携手探索未来科技世界的桥梁。
但具体到应用实践,在这场时代洪流中,企业应该怎么做?作为全球领先的云服务商,亚马逊云科技给出了自己的答案。
亚马逊云科技不仅在云的核心服务层面持续创新,更在从芯片到模型,再到应用的每一个技术堆栈取得突破,让不同层级的创新相互赋能、协同进化。只有这样全栈联动的大规模创新才能真正满足当今企业的发展需求,加速前沿技术的价值释放,助力各行各业重塑未来。
在近日举行的2024 re:Invent中国行北京站活动中,亚马逊云科技大中华区产品部总经理陈晓建表示,几乎所有的应用程序都可以分解成为几个核心的构建单元,亚马逊云科技所做的就是构建出非常优秀的核心单元,用户可以通过自由搭建这些核心单元,满足他们在特定场景下不同的业务需求。
亚马逊云科技大中华区产品部总经理陈晓建
陈晓建认为,2025年肯定会发生一个变化,很多企业将从原型验证阶段转化为生产阶段,这是必经之路。届时企业需求将更加复杂,不仅是选择模型,还需要各种技术支持。
今年,亚马逊云科技在生成式AI技术、数据战略及云服务三方面进行全面升级。生成式AI技术方面,亚马逊云科技全面强化基础设施、模型工具和应用三层技术栈,推出Amazon Nova系列基础模型,包括Nova Micro、Lite、Pro、Premier,以及专注于高质量图像生成的Nova Canvas和视频生成的Nova Reel,这些模型性能卓越且应用成本相比Amazon Bedrock中的顶尖模型降低至少75%。
去年4月,亚马逊云科技推出了第一代大模型Titan,只有语言单一模态。如果说Titan只是小试牛刀,那今天的Amazon Nova系列模型,是亚马逊的真本事和大动作。在这背后,亚马逊云科技有着怎样的考虑?
陈晓建表示,亚马逊云科技今年推出了包括六个不同定位模型的Nova系列,未来还会推出speech to speech和any to any等模型。推出这些模型的重点是为用户提供更好的选择,使其能与产品更好地结合,实现更好的集成。模型的推出基于逆向工作法,通过了解客户需求来确定,比如根据用户在Micro、Lite、Pro、Premier 等不同层面的诉求来构建模型,未来也会推出更多不同能力和定位的模型。
同时,亚马逊云科技还对Amazon SageMaker、Amazon Bedrock及Amazon Q等核心服务进行了强化,并提供更多样化的模型选项,深化应用场景的融合,降低训练与推理成本,致力于让企业更便捷、经济地将生成式AI技术融入业务实践,全面推动企业加快生成式AI的创新步伐。
Amazon Bedrock平台新增Luma AI和poolside模型,更新Stability AI的最新模型,并通过Bedrock Marketplace提供超过100个热门、新兴及专业模型的选择。此外,Bedrock还引入低延迟优化推理、模型蒸馏、提示词缓存等功能,显著提升推理效率,并通过GraphRAG等知识库功能增强数据利用能力,同时,自动推理检查功能和多智能体协作等创新也进一步增强AI的安全性和智能体的发展。
在底层模型训练方面,Amazon SageMaker AI的四项创新功能尤为引人注目,包括Amazon SageMaker HyperPod的新训练配方功能、灵活训练计划和任务治理功能,以及引入亚马逊云科技合作伙伴的热门AI应用。这些功能不仅帮助客户更快开始训练流行模型,还通过灵活的训练计划节省数周的时间,并将成本降低高达40%,为企业在生成式AI领域的探索提供强有力的支持。
针对数据战略,亚马逊云科技推出一系列创新举措,其中新一代Amazon SageMaker整合了数据、分析与AI功能,提供一站式解决方案,配备统一工作室,促进数据洞察与AI项目的协作。这些举措顺应客户将分析、机器学习和生成式AI融合以获取深度洞察的趋势,助力客户在数据驱动的时代中占据先机。
在云服务领域,亚马逊云科技在计算、网络、存储和数据库等核心领域不断突破。计算方面,推出搭载Trainium2和新型计算实例Amazon EC2 Trn2,以及专为万亿参数模型设计的实时推理超级服务器Amazon EC2 Trn2 UltraServers。存储服务方面,Amazon S3新增元数据功能,推出优化的S3 Tables存储类型,大幅提升查询和事务处理能力。数据库服务方面,推出无服务器分布式SQL数据库Amazon Aurora DSQL以满足客户跨多区域运行工作负载的高要求,并确保在多个区域间实现强一致性。这些更新,将为用户提供更强大的计算能力和更高效、更可靠的云服务体验,进一步巩固亚马逊云科技在云计算领域的领先地位。
生成式AI时代下的“底层架构师”
云服务是支持数字创新的关键生产力。不难发现,每一次技术进步的背后,云厂商都扮演着重要角色。
这一次AI浪潮背后,我们可以看见的是,云厂商为AI研发提供了基础设施、AI服务和应用工具,还在推动AI研究和实际应用方面发挥了积极作用。
亚马逊云科技即是如此。除了AI服务和应用工具,亚马逊云科技还为市场提供了丰富的计算资源和功能强大的云服务。
面对生成式AI时代带来的井喷式算力需求,亚马逊云科技通过自研芯片提供更好的性价比,通过各种丰富的计算、网络、存储等各种产品的组合优化算力成本,全面满足用户的多样化的算力需求。
云厂商不仅要扮演生成式AI时代的“底层架构师”,还必须克服数据安全和隐私保护等挑战,为用户提供安全、便捷的服务,使得生成式AI的应用能够更广泛、更深入地渗透到每一个行业和领域。
面对未来,我们期待云厂商能够持续发挥“底层架构师”的角色,引领生成式AI技术的发展,助力全社会发挥AI的巨大潜力。
【关于科技云报到】
企业级IT领域Top10新媒体。聚焦云计算、人工智能、大模型、网络安全、大数据、区块链等企业级科技领域。原创文章和视频获工信部权威认可,是世界人工智能大会、数博会、国家网安周、可信云大会与全球云计算等大型活动的官方指定传播媒体之一。
相关文章:

科技云报到:人工智能时代“三大件”:生成式AI、数据、云服务
科技云报到原创。 就像自行车、手表和缝纫机是工业时代的“三大件”。生成式AI、数据、云服务正在成为智能时代的“新三大件”。加之全球人工智能新基建加速建设,成为了人类社会数字化迁徙的助推剂,让新三大件之间的耦合越来越紧密。从物理世界到数字世…...
【网络云计算】2024第52周-每日【2024/12/26】小测-理论实操-备份MySQL数据库并发送邮件-解析
文章目录 1. 编写备份脚本2. 设置定时任务3. 注意事项 【网络云计算】2024第52周-每日【2024/12/26】小测-理论&实操-备份MySQL数据库并发送邮件-解析 为了实现您提出的Discuz数据库备份任务,包括备份脚本、定时任务、备份成功邮件确认、脚本运行时长、备份后的…...

菜鸟带新鸟——基于EPlan2022的部件库制作(3D)
设备逻辑的概念: 可在布局空间 中和其它对象上放置对象。可将其它对象放置在 3D 对象上。已放置的对象分到组件的逻辑结构中。 将此属性的整体标识为设备逻辑。可使用不同的功能创建和编辑设备逻辑。 设备的逻辑定义 定义 / 旋转 / 移动 / 翻转:组…...

Level DB --- MemTable
MemTable是Level DB中重要的组件,它主要处理Level DB内存级别的增删查改。 基本数据结构 基础的存储数据结构如图1所示,这是一个存储单元的结构。其中1是internal key size,这里面包括两部分,一部分我们Level DB存储key-value中…...

【山西长治】《长治市市直部门政务信息化建设项目预算编制规范和预算编制标准》(长财行[2022]25号)-省市费用标准解读系列32
《长治市市直部门政务信息化建设项目预算编制规范和预算编制标准(试行)》(长财行[2022]25号)于2022年8月1日开始试行,此标准由长治市财政局、长治市行政审批管理局编制,是对信息化建设项目预算管理的基本要求,主要适用…...
海格通信嵌入式面试题及参考答案
计算电路的最高工作频率如何计算? 计算电路的最高工作频率主要考虑电路中的关键路径延迟。关键路径是指在整个电路中,信号传播延迟最长的路径。电路的最高工作频率的倒数就是时钟周期,而时钟周期必须大于关键路径的延迟时间。 首先要确定电路中各个模块的延迟。比如对于组合…...

前端学习DAY27(盒子模型内边距)
内边距(padding),指的是盒子的内容区与盒子边框之间的距离 一共有四个方向的内边距, 可以通过: padding-top padding-right padding-bottom padding-left <!DOCTYPE html> <html lang"en"> <head><meta charset"U…...

基于cobra开发的k8s命令行管理工具k8s-manager
基于cobra开发的k8s命令行管理工具k8s-manager 如果觉得好用,麻烦给个Star!通用配置1 node 分析所有node的资源情况2 analysis 分析Node节点上的资源使用构成3 image 获取指定namespace的所有镜像地址4 resource 获取指定namespace的所有limit 与 Requests大小5 top…...
scala基础学习(数据类型)-数组
文章目录 数组 Array创建数组直接定义fillofDimtabulate range打印数组toSeqdeepforeach(println) length获取长度indexOf 获取元素索引获取元素/修改元素遍历数组数组内元素转换filter 过滤found 查找元素数组折叠 foldLeft切片拼接排序拷贝copyclone 数组 Array Array是一个…...

uniapp 微信小程序 页面部分截图实现
uniapp 微信小程序 页面部分截图实现 原理都是将页面元素画成canvas 然后将canvas转化为图片,问题是我页面里边本来就有一个canvas,ucharts图画的canvas我无法画出这块。 想了一晚上,既然canvas最后能转化为图片,那我直接…...

C语言从入门到放弃教程
C语言从入门到放弃 1. 介绍1.1 特点1.2 历史与发展1.3 应用领域 2. 安装2.1 编译器安装2.2 编辑器安装 3. 第一个程序1. 包含头文件2. 主函数定义3. 打印语句4. 返回值 4. 基础语法4.1 注释4.1.1 单行注释4.1.2 多行注释 4.2 关键字4.2.1 C语言标准4.2.2 C89/C90关键字…...

直流无刷电机驱动原理3-驱动板硬件设计
六步换向原理 检测转子角度,知道什么时候是60度,什么时候应该换向。 逆时针旋转 三相逆变器,mos管,半桥驱动电路。 PWM调制 不对称半桥调制例程使用第(2)种。对上桥臂PWM调制,下桥臂全部导通。这时候由上桥臂的PWM的占空比决定电机的旋转速度。驱动器电路硬件框图--实…...

攻防世界web第三题file_include
<?php highlight_file(__FILE__);include("./check.php");if(isset($_GET[filename])){$filename $_GET[filename];include($filename);} ?>惯例: 代码审查: 1.可以看到include(“./check.php”);猜测是同级目录下有一个check.php文…...
Trivy Operator命令使用说明
你已成功安装了 Trivy Operator,以下是命令的使用说明: 1. 查看 VulnerabilityReports VulnerabilityReports 是 Trivy Operator 生成的漏洞扫描报告,用于检查容器镜像中的漏洞。 kubectl get vulnerabilityreports --all-namespaces -o wi…...
Lazada商品评论API接口:深度解析与应用实践
在电商领域,用户评论是了解产品市场表现和消费者反馈的重要渠道。Lazada作为东南亚领先的电商平台,提供了商品评论API接口,允许第三方开发者获取平台上商品的评论信息。本文将深入解析Lazada商品评论API接口的重要性、开发应用、以及如何通过…...

2024最新鸿蒙开发面试题合集(二)-HarmonyOS NEXT Release(API 12 Release)
上一篇面试题链接:https://mp.csdn.net/mp_blog/creation/editor/144685078 1. 鸿蒙简单介绍和发展历程 HarmonyOS 是新一代的智能终端操作系统,为不同设备的智能化、互联与协同提供了统一的语言。带来简洁,流畅,连续࿰…...

macrodroid通过http请求控制手机运行宏
macrodroid adb命令 adb shell pm grant com.arlosoft.macrodroid android.permission.WRITE_SECURE_SETTINGS例:http请求手机播放指定MP3文件 声音素材_电量过低提醒 新建一个宏 添加触发器-连接-http服务器请求 路径随意填,最好不要有特殊符号,不然浏览器识别链接会出错,…...

【Unity3D】Jobs、Burst并行计算裁剪Texture3D物体
版本:Unity2019.4.0f1 PackageManager下载Burst插件(1.2.3版本) 利用如下代码,生成一个Texture3D资源,它只能脚本生成,是一个32*32*32的立方体,导出路径记得改下,不然报错。 using UnityEditor; using Uni…...
Cesium材质——Material
简介: Cesium.Material对象的目的,就是生成一段名称为czm_getMaterial的函数(示例代码如下), 这个czm_getMaterial函数,是shader代码,会被放到片元着色器中使用。 czm_material czm_getMater…...

Postman请求报错SSL证书验证问题
1.报错如下 2.解决报错...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...