【深度学习】Java DL4J基于 CNN 构建车辆识别与跟踪模型
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,
15年
工作经验,精通Java编程
,高并发设计
,Springboot和微服务
,熟悉Linux
,ESXI虚拟化
以及云原生Docker和K8s
,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea
【深度学习】Java DL4J基于 CNN 构建车辆识别与跟踪模型
引言
在当今快速发展的交通领域,车辆的有效管理和监控对于保障交通安全、优化交通流量以及维护社会秩序至关重要。传统的交通监控方法往往依赖于人工观察和简单的图像处理技术,存在效率低下、准确性不高以及难以应对复杂交通场景等问题。随着深度学习技术的飞速发展,利用其强大的特征学习和模式识别能力来解决交通领域的车辆识别与跟踪问题成为了研究的热点。
Java
作为一种广泛应用的编程语言,具有丰富的类库和强大的跨平台能力。Deeplearning4j
是一个基于Java
的深度学习库,它提供了丰富的工具和算法,使得在Java
环境中进行深度学习模型的开发变得更加便捷。本文将介绍如何使用Java Deeplearning4j
在交通领域构建车辆识别与跟踪模型,通过识别车辆类型、车牌号码等信息,实现车辆的跟踪和管理,为交通管理提供有力的数据支持。
我们将深入探讨该案例所用到的技术细节,包括数据集的准备、模型的构建、训练、评估以及测试等环节。同时,还将介绍如何引入相关的Maven
依赖,以及给出每一步的详细代码示例和注释,帮助读者更好地理解和实践。
1. 技术概述
1.1 Deeplearning4j简介
Deeplearning4j
是一个开源的深度学习库,用于在Java和Scala中进行深度学习。它提供了丰富的神经网络架构,如多层感知机(Multilayer Perceptron,MLP)、卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)及其变体长短期记忆网络(Long Short-Term Memory,LSTM)等。在本案例中,我们选择卷积神经网络(CNN)来实现车辆识别与跟踪模型。
1.2 选择CNN
的理由
CNN
具有强大的特征提取能力,特别适合处理具有网格结构的数据,如图像。在车辆识别任务中,图像数据是主要的输入来源。CNN
通过卷积层、池化层和全连接层等组件,可以自动学习图像中的特征,如车辆的轮廓、颜色、纹理等,从而准确地识别车辆类型和车牌号码。此外,CNN还具有平移不变性和局部感知性等优点,能够有效减少模型的参数数量,提高训练效率和泛化能力。
2. 引入DL4J相关的Maven依赖
要使用Deeplearning4j
进行车辆识别与跟踪模型的开发,需要在项目的pom.xml
文件中引入以下依赖:
<dependencies><!-- Deeplearning4j核心依赖 --><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>1.0.0-beta7</version></dependency><!-- 卷积神经网络依赖 --><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-nn</artifactId><version>1.0.0-beta7</version></dependency><!-- 数据处理依赖 --><dependency><groupId>org.nd4j</groupId><artifactId>nd4j-native-platform</artifactId><version>1.0.0-beta7</version></dependency><!-- 可视化依赖 --><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-ui_2.13</artifactId><version>1.0.0-beta7</version></dependency>
</dependencies>
上述依赖中,deeplearning4j-core
是Deeplearning4j的核心库,提供了深度学习的基本功能;deeplearning4j-nn
包含了构建神经网络的相关类和方法;nd4j-native-platform
用于数据处理和计算;deeplearning4j-ui_2.13
用于可视化模型的训练过程和结果。
3. 数据集准备
3.1 数据集格式
在本案例中,我们使用的数据集包含车辆图像和对应的标注信息。数据集的目录结构如下:
dataset
├── train
│ ├── images
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └──...
│ └── labels
│ ├── 000001.txt
│ ├── 000002.txt
│ └──...
└── test├── images│ ├── 000100.jpg│ ├── 000101.jpg│ └──...└── labels├── 000100.txt├── 000101.txt└──...
其中,train
目录下的images
文件夹存放训练集的图像数据,labels
文件夹存放对应的标注信息;test
目录下的images
文件夹存放测试集的图像数据,labels
文件夹存放对应的标注信息。标注信息的格式为:
<class_id> <x_center> <y_center> <width> <height>
其中,<class_id>
表示车辆类型的类别编号,<x_center>
、<y_center>
分别表示车辆在图像中的中心点坐标,<width>
和<height>
分别表示车辆的宽度和高度。
以下是一个标注信息的示例:
文件名 | 标注信息 |
---|---|
000001.txt | 1 0.5 0.6 0.4 0.3 |
3.2 数据加载和预处理
在Java中,我们可以使用以下代码加载和预处理数据集:
import org.datavec.image.loader.NativeImageLoader;
import org.datavec.image.transform.ImageTransform;
import org.datavec.image.transform.ResizeImageTransform;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.FileMultiDataSetIterator;
import java.io.File;public class DataLoader {public static DataSetIterator loadTrainData() throws Exception {// 图像加载器NativeImageLoader loader = new NativeImageLoader(224, 224, 3);// 图像变换,调整大小ImageTransform transform = new ResizeImageTransform(224, 224);// 数据归一化DataNormalization scaler = new ImagePreProcessingScaler(0, 1);// 训练集数据迭代器FileMultiDataSetIterator iterator = new FileMultiDataSetIterator.Builder().addFileLocation(new File("dataset/train/images"), loader, transform).addFileLocation(new File("dataset/train/labels")).batchSize(32).build();iterator.setPreProcessor(scaler);return iterator;}public static DataSetIterator loadTestData() throws Exception {// 图像加载器NativeImageLoader loader = new NativeImageLoader(224, 224, 3);// 图像变换,调整大小ImageTransform transform = new ResizeImageTransform(224, 224);// 数据归一化DataNormalization scaler = new ImagePreProcessingScaler(0, 1);// 测试集数据迭代器FileMultiDataSetIterator iterator = new FileMultiDataSetIterator.Builder().addFileLocation(new File("dataset/test/images"), loader, transform).addFileLocation(new File("dataset/test/labels")).batchSize(32).build();iterator.setPreProcessor(scaler);return iterator;}
}
上述代码中,loadTrainData
方法用于加载训练集数据,loadTestData
方法用于加载测试集数据。首先,我们创建了一个NativeImageLoader
对象,用于加载图像数据,并指定图像的大小和通道数。然后,创建了一个ResizeImageTransform
对象,用于将图像调整为指定的大小。接着,创建了一个ImagePreProcessingScaler
对象,用于对图像数据进行归一化处理。最后,使用FileMultiDataSetIterator
构建了数据迭代器,用于批量加载数据。
4. 模型构建
4.1 构建CNN模型
在本案例中,我们构建一个简单的CNN模型,用于车辆识别与跟踪。以下是模型构建的代码示例:
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.MaxPooling2D;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;public class ModelBuilder {public static ComputationGraph buildModel() {// 模型配置ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder().seed(123).updater(new Adam(0.001)).graphBuilder().addInputs("input")// 卷积层1.addLayer("conv1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).nIn(3).nOut(32).activation(Activation.RELU).build(), "input")// 池化层1.addLayer("pool1", new MaxPooling2D.Builder().kernelSize(2, 2).stride(2, 2).build(), "conv1")// 卷积层2.addLayer("conv2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).nIn(32).nOut(64).activation(Activation.RELU).build(), "pool1")// 池化层2.addLayer("pool2", new MaxPooling2D.Builder().kernelSize(2, 2).stride(2, 2).build(), "conv2")// 全连接层.addLayer("fc1", new DenseLayer.Builder().nIn(64 * 56 * 56).nOut(128).activation(Activation.RELU).build(), "pool2")// 输出层.addLayer("output", new OutputLayer.Builder().nIn(128).nOut(10).lossFunction(LossFunctions.LossFunction.MSE).activation(Activation.SOFTMAX).build(), "fc1").setOutputs("output").setInputTypes(InputType.convolutional(224, 224, 3)).build();// 创建计算图模型ComputationGraph model = new ComputationGraph(config);model.init();return model;}
}
上述代码中,我们首先创建了一个ComputationGraphConfiguration
对象,用于配置模型的参数。然后,依次添加了卷积层、池化层、全连接层和输出层等组件,构建了一个简单的CNN模型。其中,卷积层用于提取图像的特征,池化层用于降低数据的维度,全连接层用于将特征进行整合,输出层用于输出预测结果。最后,使用ComputationGraph
创建了计算图模型,并进行初始化。
5. 模型训练
5.1 训练代码示例
以下是模型训练的代码示例:
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;public class ModelTrainer {public static void trainModel(ComputationGraph model, DataSetIterator trainData) throws Exception {for (int i = 0; i < 10; i++) {model.fit(trainData);}}
}
上述代码中,我们使用fit
方法对模型进行训练,训练轮数为10轮。
6. 模型评估
6.1 评估代码示例
以下是模型评估的代码示例:
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.primitives.Pair;public class ModelEvaluator {public static void evaluateModel(ComputationGraph model, DataSetIterator testData) throws Exception {Pair<Double, Double> result = model.evaluate(testData);System.out.println("Loss: " + result.getFirst());System.out.println("Accuracy: " + result.getSecond());}
}
上述代码中,我们使用evaluate
方法对模型进行评估,输出损失值和准确率。
7. 模型测试
7.1 测试代码示例
以下是模型测试的代码示例:
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.datavec.image.loader.NativeImageLoader;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.io.File;public class ModelTester {public static void testModel(ComputationGraph model, String imagePath) throws Exception {NativeImageLoader loader = new NativeImageLoader(224, 224, 3);INDArray image = loader.asMatrix(new File(imagePath));INDArray output = model.output(image);System.out.println("Prediction: " + output);}
}
上述代码中,我们使用output
方法对输入的图像进行预测,输出预测结果。
8. 参考资料文献
- Deeplearning4j官方文档:https://deeplearning4j.konduit.ai/
- 《深度学习入门:基于Python的理论与实现》
- 《动手学深度学习》
相关文章:

【深度学习】Java DL4J基于 CNN 构建车辆识别与跟踪模型
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
【C#】C#打印当前时间以及TimeSpan()介绍
1. C#打印当前时间 string currentDate DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss.fff");Console.WriteLine(currentDate);2. TimeSpan()介绍 TimeSpan(long ticks)的单位是100ns //500ms new TimeSpan(10*1000*500);参考: C#-TimeSpan-计算时间差...

【Linux 网络 (五)】Tcp/Udp协议
Linux 网络 一前言二、Udp协议1)、Udp协议特点2)、Udp协议格式3)、Udp报文封装和解包过程4)、UDP的缓冲区 三、TCP协议1)、TCP协议特点2)、TCP协议格式1、4位首部长度、源端口、目的端口2、16位窗口大小3、…...

多旋翼无人机理论 | 四旋翼动力学数学模型与Matlab仿真
多旋翼无人机理论 | 四旋翼动力学数学模型与Matlab仿真 力的来源数学模型数学模型总结Matlab 仿真 力的来源 无人机的动力系统:电调-电机-螺旋桨 。 给人最直观的感受就是 电机带动螺旋桨转,产生升力。 螺旋桨旋转产生升力的原因,在很多年…...

Vue3项目中引入TailwindCSS(图文详情)
Vue3项目中引入TailwindCSS(图文详细) Tailwind CSS 是一个实用工具优先的 CSS 框架,提供丰富的低级类(如 text-center、bg-blue-500),允许开发者通过组合这些类快速构建自定义设计,而无需编写…...

【开源项目】数字孪生化工厂—开源工程及源码
飞渡科技数字孪生化工厂管理平台,基于自研孪生引擎,将物联网IOT、人工智能、大数据、云计算等技术应用于化工厂,为化工厂提供实时数据分析、工艺优化、设备运维等功能,助力提高生产效率以及提供安全保障。 通过可视化点位标注各厂…...

咨询团队如何通过轻量型工具优化项目管理和提高团队协作效率?
引言 在咨询行业,项目的复杂性和多样性往往意味着团队成员需要协同工作、迅速适应客户需求的变化并且在较短的时间内交付高质量的成果。对于咨询团队来说,选择一个适合的项目管理工具,不仅能够提高工作效率,还能促进团队的协作、…...
javaWeb开发
Java Web开发作为软件开发领域的一个重要分支,已经历经数十年的发展,并凭借其强大的跨平台能力、丰富的生态系统以及高度的安全性,成为构建企业级应用的首选技术之一。以下是对Java Web开发的详细解析: 一、Java Web开发的基本概…...
如何在 Vue 中处理 API 请求?
在 Vue.js 中处理 API 请求是构建动态、交互式 Web 应用程序的核心部分。为了有效地与后端服务器通信,Vue 生态系统提供了多种方式来发起和管理 API 请求。以下是几种常见的方法和最佳实践: 1. 使用 Axios Axios 是一个基于 Promise 的 HTTP 客户端&am…...
基于Debian的Linux发行版的包管理工具
基于Debian的Linux发行版中除了apt和apt-get之外,还有以下几种包管理工具: dpkg:这是Debian系发行版中最基础的包管理工具,专门用于安装、卸载和查询.deb包。与高级包管理器不同,dpkg不自动解决包的依赖关系࿰…...
2022年国家公考《申论》题(行政执法)
2022年国家公考《申论》题(行政执法) 材料一 新型冠状病毒肺炎疫情发生后,党中央、国务院出台了一系列支持企业发展的惠企政策。N市积极落实各项惠企政策,不断优化营商环境,推动区域经济高质量跨越式发展。 “当时…...

贪心算法(常见贪心模型)
常见贪心模型 简单排序模型 最小化战斗力差距 题目分析: #include <bits/stdc.h> using namespace std;const int N 1e5 10;int n; int a[N];int main() {// 请在此输入您的代码cin >> n;for (int i 1;i < n;i) cin >> a[i];sort(a1,a1n);…...
git自动压缩提交的脚本
可以将当前未提交的代码自动执行 git addgit commitgit squash Git 命令安装指南 1. 创建脚本目录 如果目录不存在,创建它: mkdir -p ~/.local/bin2. 创建脚本文件 vim ~/.local/bin/git-squash将完整的脚本代码复制到此文件中。 3. 设置脚本权限…...

Kinova在开源家庭服务机器人TidyBot++研究里大展身手
在科技日新月异的今天,机器人技术在家庭场景中的应用逐渐成为现实,改变着我们的生活方式。今天,我们将深入探讨一篇关于家用机器人研究的论文,剖析其中的创新成果, 论文引用链接:http://tidybot2.github.i…...
使用 Spring Boot 实现文件上传:从配置文件中动态读取上传路径
使用 Spring Boot 实现文件上传:从配置文件中动态读取上传路径 一、前言二、文件上传的基本概念三、环境准备1. 引入依赖2. 配置文件设置application.yml 配置示例:application.properties 配置示例: 四、编写文件上传功能代码1. 控制器类2. …...

《鸿蒙HarmonyOS应用开发从入门到精通(第2版)》学习笔记——HarmonyOS技术理念
1.2 技术理念 在万物智联时代重要机遇期,HarmonyOS结合移动生态发展的趋势,提出了三大技术理念(如下图3-1所示):一次开发,多端部署;可分可合,自由流转;统一生态…...
将多个 k8s yaml 配置文件合并为一个文件
如下bash脚本实现功能 “将多个k8s的yaml 配置文件” 合并为一个 yaml,使用 --- 分割文件配置。 创建文件 merge_yaml.sh ,内容如下: #!/bin/bash# 默认参数 input_patterns() # 匹配的文件模式数组 output_file"combined.yaml"…...

Linux 文件的特殊权限—Sticky Bit(SBIT)权限
本文为Ubuntu Linux操作系统- 第十九期~~ 其他特殊权限: 【SUID 权限】和【SGID 权限】 更多Linux 相关内容请点击👉【Linux专栏】~ 主页:【练小杰的CSDN】 文章目录 Sticky(SBIT)权限基本概念Sticky Bit 的表示方式举例 设置和取…...

MIPI D-PHY/C-PHY/M-PHY 高速串行接口标准
MIPI D-PHY、C-PHY和M-PHY都是MIPI联盟制定的高速串行接口标准。它们都具有低功耗、高速传输速率等特点,但各有侧重: ➢MIPI D-PHY:适用于手机与其他设备之间的数据传输。 ➢MIPI C-PHY:专为手机摄像头而设计。 ➢MIPI M-PHY&am…...

USB免驱IC读写器QT小程序开发
USB免驱全协议IC卡读写器QT小程序开发,读取15693卡。 QT小程序UI开发界面: QT程序代码mainWindow.cpp代码如下: MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this); }MainWind…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...