7-1求逆序对数目
目录
题目描述
输入样例:
输出样例:
逆序对的含义:
具体思路:
归并排序:
求逆序对:
代码实现:
对于mid-z+1举个例子
题目描述
注意:本问题算法的时间复杂度要求为O(nlogn), 否则得分无效
题目来源:http://poj.org/problem?id=1804
Background
Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just by glancing at them. And he can even count Poker cards. Charlie would love to be able to do cool things like that, too. He wants to beat his brother in a similar task.Problem
Here's what Charlie thinks of. Imagine you get a sequence of N numbers. The goal is to move the numbers around so that at the end the sequence is ordered. The only operation allowed is to swap two adjacent numbers. Let us try an example:
Start with: 2 8 0 3
swap (2 8) 8 2 0 3
swap (2 0) 8 0 2 3
swap (2 3) 8 0 3 2
swap (8 0) 0 8 3 2
swap (8 3) 0 3 8 2
swap (8 2) 0 3 2 8
swap (3 2) 0 2 3 8
swap (3 8) 0 2 8 3
swap (8 3) 0 2 3 8So the sequence (2 8 0 3) can be sorted with nine swaps of adjacent numbers. However, it is even possible to sort it with three such swaps:
Start with: 2 8 0 3
swap (8 0) 2 0 8 3
swap (2 0) 0 2 8 3
swap (8 3) 0 2 3 8The question is: What is the minimum number of swaps of adjacent numbers to sort a given sequence?Since Charlie does not have Raymond's mental capabilities, he decides to cheat. Here is where you come into play. He asks you to write a computer program for him that answers the question in O(nlogn). Rest assured he will pay a very good prize for it.
输入格式:
The first line contains the length N (1 <= N <= 1000) of the sequence;
The second line contains the N elements of the sequence (each element is an integer in [-1000000, 1000000]). All numbers in this line are separated by single blanks.输出格式:
Print a single line containing the minimal number of swaps of adjacent numbers that are necessary to sort the given sequence.
输入样例:
在这里给出一组输入。例如:
6 -42 23 6 28 -100 65537
输出样例:
在这里给出相应的输出。例如:
5
如标题所示,题目简单来说就是求一个数组中逆序对的个数
逆序对的含义:
对于数列的第 i 个和第 j 个元素,如果满足 i < j 且 a[i] > a[j],则其为一个逆序对
另外一个元素可能存在于多个逆序对中,例如:
第i个元素,第j个元素,第k个元素存在,i<j<k且a[i]>a[j]>a[k]则有两个逆序对,且都含有a[i]
以题目为例
-42 23 6 28 -100 65537
从小到大排序为
-100 -42 6 23 28 65537
-100比它左边的-42 23 6 28都小,所以逆序对加4
-100与-42为一个逆序对
-100与23为一个逆序对
-100与6为一个逆序对
-100与28为一个逆序对
6比它左边的23小,所以逆序对加1
6与23为一个逆序对
4+1=5即为答案
具体思路:
归并排序:
1、将序列平均分为两个区间(部分)
2、递归排序左区间和右区间
3、将左右两个区间已经排序好的序列合并成一个有序的序列
求逆序对:
分为三种情况
假设需要对比的两个元素
1、两个元素都在区间的左边
2、两个元素都在区间的右边
3、两个元素一个在区间左边一个在区间右边
代码实现:
#include<iostream> using namespace std; #define int long long const int N=1e5+7; int sz[N];//存储序列 int ans=0; void gb_px(int l,int r) {if(l>=r)return;//如果左边的下标大于等于右边,代表已经无法分成两部分了,所以返回即可int mid=(l+r)>>1;//相当于mid=(l+r)/2;gb_px(l,mid);//进入左区间排序gb_px(mid+1,r);//进入右区间排序int z=l,y=mid+1,xb=0;int zs[r-l+1];//可以用全局变量,但是数组长度肯定不超过r-l+1while(z<=mid&&y<=r)//左边的起始点不能超过中点,右边的起始点不能超过右边的右边的界限{if(sz[z]<=sz[y])//如果左边的数小于等于右边,则将左边的元素放在前面,用zs数组暂时存,此时左边的下标往右移动一位{zs[xb++]=sz[z++];}else//否则如果右边的数小于左边,则将右边的元素放在前面,用zs数组暂时存,此时右边的下标往右移动一位{zs[xb++]=sz[y++];ans+=mid-z+1;//关键一步,此时中点减去左边指针的下标加一即为对于sz[y]这个数,实际计算的是在左区间中大于右区间指向的这个数的个数,在这个区间中的逆序对的个数。}}//移动完以后还会有剩下的数,显然他们已经是有序的了while(z<=mid)//左半边还剩下几个元素,全都加进去{zs[xb++]=sz[z++];}while(y<=r)//右半边还剩下几个元素,全都加进去{zs[xb++]=sz[y++];}for(int i=l,j=0;i<=r;i++,j++)//更新l到r的数组元素的顺序,因为zs数组是从0开始为下标存储的{sz[i]=zs[j];} } signed main() {int n;cin>>n;for(int i=0;i<n;i++){cin>>sz[i];}gb_px(0,n-1);//进入归并排序,数组下标为0到n-1cout<<ans; }
对于mid-z+1举个例子
例如
现在存在一个区间,他们的开始下标假设为0,此时的mid为(0+7)/2=3,即z=0,mid=3,y=4。
1 2 3 4 2 3 4 5
很明显
可以分成
1 2 3 4为左区间
2 3 4 5为右区间
左区间为上一轮排序好的
右区间也为上一轮排序好的
左区间中1 2小于右区间的2所以将
1 2放入zs数组中存储
此时左区间的3显然大于右区间的2,所以此时逆序对的个数为3-2+1=2个
为什么是mid-z+1呢,因为,左区间右区间序列是已经排序好的
可以发现3后面的所有元素都是大于右区间中2的,即算出了左区间中大于当前右区间指向的这个数2的元素的个数,为2个
相关文章:
7-1求逆序对数目
目录 题目描述 输入样例: 输出样例: 逆序对的含义: 具体思路: 归并排序: 求逆序对: 代码实现: 对于mid-z1举个例子 题目描述 注意:本问题算法的时间复杂度要求为O(nlogn), 否则得分无效 题目来源ÿ…...
C# 中 Webclient和Httpclient
在C#中,WebClient和HttpClient,这两个类都是用于发起HTTP请求的客户端,它们在使用API上传文件或数据时有不同的优缺点和应用场景。在C#中WebClient是一种较早的网络客户端,而HttpClient是后期提供的更现代的、功能更强大的HTTP客户…...

cesium入门学习三
这期主要学习一下鼠标点击事件以及鼠标滚轮事件。 学习目录总结: cesium入门学习一-CSDN博客 cesium入门学习二-CSDN博客 1.鼠标事件 1.1 点击鼠标左键显示经度、纬度、高度 效果: js代码: var viewer new Cesium.Viewer(cesiumConta…...
swagger,showdoc,apifox,Mock 服务,dubbo,ZooKeeper和dubbo的关系
Swagger、ShowDoc 和 Apifox 之间的区别与优势 Swagger、ShowDoc 和 Apifox 都是用于 API 文档管理和测试的工具,但它们各有特色和适用场景。以下是详细的比较,并附上每个工具的具体用法示例。 1. Swagger 特点与优势: 广泛采用: Swagger…...

【自信息、信息熵、联合熵、条件熵、互信息】
文章目录 一、自信息 I(X)二、信息熵:衡量系统的混乱程度信息熵 H(X)联合熵 H(X,Y) 三、条件熵H(Y|X) 联合熵H(X,Y) - 信息熵H(X)四、互信息 I(X,Y)五、总结References 一、自信息 I(X) 自信息(Self-information) 是由香农提出的,用来衡量单一事件发生…...
免费资源网站
记录一下 音效 爱给网制片帮素材...

C++--------继承
一、继承的基本概念 继承是 C 中的一个重要特性,它允许一个类(派生类或子类)继承另一个类(基类或父类)的属性和方法。这样可以实现代码的重用和建立类之间的层次关系。 #include <iostream>// 基类 class Base…...

Python PyMupdf 去除PDF文档中Watermark标识水印
通过PDF阅读或编辑工具,可在PDF中加入Watermark标识的PDF水印,如下图: 该类水印特点 这类型的水印,会在文件的字节流中出现/Watermark、EMC等标识,那么,我们可以通过改变文件字节内容,清理掉…...
改进爬山算法之四:概率爬山法(Probabilistic Hill Climbing,PHC)
概率爬山法(Probabilistic Hill Climbing,PHC)是一种局部搜索算法,它结合了随机性和贪婪搜索的特点,是对爬山算法(Hill Climbing Algorithm)的一种变体或扩展。与传统的爬山法不同,PHC不是总是选择最优的邻居作为下一步的移动,而是以一定的概率选择最优邻居,同时以一…...

解读DeepseekV3
本年度还剩几天,Deepseek就发布了这么值得惊喜的产品,我觉得是真正做AI,也喜欢AI同学,对这个魔幻的2024年12月,一定是未来多少年想起都能回忆起这波澜壮阔的岁月。 我见过的最省的GPT4o,Claude,…...
【网络安全 | 漏洞挖掘】如何通过竞态条件发现账户接管漏洞
未经许可,不得转载。 文章目录 背景正文设置竞态条件实现漏洞背景 目标应用允许用户创建项目。这些项目中包含多个用户角色,每个角色权限不同(如所有者、管理员、成员管理者等)。用户可通过接受邀请来加入项目,而只有项目所有者才能通过输入邮箱将项目所有权转移给其他用…...

串口通信标准RS232、RS422、RS485有什么区别和不同
目录 第一个区别:硬件管脚接口定义不同: 第二个区别、工作方式不同 第三个区别、通信方式不同 第四个区别,逻辑特性不同 第五个区别、抗干扰性、传输距离和传输速率也不同 RS-232与RS-485对比 RS-422与RS-485对比 今天给大家分享的是&…...

win版ffmpeg的安装和操作
一、ffmpeg软件安装: ffmpeg是一个通过命令行将视频转化为图片的软件。 在浏览器搜索ffmpeg在官网里找到软件并下载(不过官网很慢),建议用这个下载。 下载的文件是一个zip压缩包,将压缩包解压,有如下文件…...
力扣56. 合并区间
此题在技巧上需要掌握Lambda表达式,在 C 的 Lambda 表达式 中,[] 是 捕获列表(capture list),用于指定 Lambda 表达式如何访问其外部作用域的变量。 [捕获列表](参数列表) -> 返回类型 {函数体 };• 捕获列表&…...

2024基于大模型的智能运维(附实践资料合集)
基于大模型的智能运维是指利用人工智能技术,特别是大模型技术,来提升IT运维的效率和质量。以下是一些关键点和实践案例: AIOps的发展:AIOps(人工智能在IT运维领域的应用)通过大数据分析和机器学习技术&…...
Android Java 版本的 MSAA OpenGL ES 多重采样
最近多次被小伙伴问到 OpenGL 多重采样,其实前面文章里多次讲过了,就是构建2个缓冲区,多重采样缓冲区和目标解析缓冲区。 代码流程 // Framebuffer IDs private int msaaFBO; private int msaaColorBuffer; private int msaaDepthBuffer;pr…...

YOLO11改进-注意力-引入自调制特征聚合模块SMFA
本篇文章将介绍一个新的改进机制——SMFA(自调制特征聚合模块),并阐述如何将其应用于YOLOv11中,显著提升模型性能。随着深度学习在计算机视觉中的不断进展,目标检测任务也在快速发展。YOLO系列模型(You Onl…...

VMware虚拟机安装银河麒麟操作系统KylinOS教程(超详细)
目录 引言1. 下载2. 安装 VMware2. 安装银河麒麟操作系统2.1 新建虚拟机2.2 安装操作系统2.3 网络配置 3. 安装VMTools 创作不易,禁止转载抄袭!!!违者必究!!! 创作不易,禁止转载抄袭…...
Elasticsearch-索引的批量操作
索引的批量操作 批量查询和批量增删改 批量查询 #批量查询 GET product/_search GET /_mget {"docs": [{"_index": "product","_id": 2},{"_index": "product","_id": 3}] }GET product/_mget {"…...
【Android】application@label 属性属性冲突报错
错误记录 What went wrong: Execution failed for task :app:processDebugMainManifest. > Manifest merger failed : Attribute applicationlabel value(string/app_name) from AndroidManifest.xml:8:9-41is also present at [:abslibrary] AndroidManifest.xml:25:9-47 v…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...