当前位置: 首页 > news >正文

Stream API 的设计融合了多个经典设计模式

Stream API 的设计融合了多个经典设计模式:

1. 策略模式(Strategy Pattern)

策略模式定义了一个算法的家族,将每个算法封装起来,并使它们可以互换。Stream API 中的每个操作(如 filter(), map())都是一个策略,它允许用户以灵活的方式组合这些操作。

import java.util.*;
import java.util.stream.*;public class StrategyPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 策略1: 过滤偶数List<Integer> evenNumbers = numbers.stream().filter(n -> n % 2 == 0)  // 策略1.collect(Collectors.toList());// 策略2: 将每个数字加倍List<Integer> doubledNumbers = numbers.stream().map(n -> n * 2)           // 策略2.collect(Collectors.toList());System.out.println("Even Numbers: " + evenNumbers);System.out.println("Doubled Numbers: " + doubledNumbers);}
}

输出:

Even Numbers: [2, 4, 6, 8, 10]
Doubled Numbers: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

上面代码中,filtermap 都是不同的策略操作,它们可以灵活地组合在一起。你可以选择不同的策略(如筛选偶数或将数字加倍),并将它们组合成一个管道来处理数据。

2. 装饰者模式(Decorator Pattern)

Stream API 中的中间操作(如 filter(), map())是典型的装饰者模式。每个中间操作都会返回一个新的流对象,逐步增强原始流的功能。

import java.util.*;
import java.util.stream.*;public class DecoratorPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用装饰者模式: 先过滤偶数,再将每个数字加倍List<Integer> result = numbers.stream().filter(n -> n % 2 == 0)   // 装饰者1: 筛选偶数.map(n -> n * 2)           // 装饰者2: 每个数字加倍.collect(Collectors.toList());System.out.println("Processed Numbers: " + result);}
}

输出:

Processed Numbers: [4, 8, 12, 16, 20]

上面代码中,filtermap 是装饰者模式的实现。每个中间操作都返回一个新的流,逐步增强原始流的功能。最终的流会先过滤偶数,再将这些偶数乘以 2。

3. 惰性求值(Lazy Evaluation)

Stream API 的惰性求值意味着中间操作不会立即执行,只有在遇到终端操作时,流才会开始计算。以下是一个示例:

import java.util.*;
import java.util.stream.*;public class LazyEvaluationDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 惰性求值,只有在终端操作(forEach)执行时,流才会开始计算numbers.stream().filter(n -> {System.out.println("Filtering: " + n);return n % 2 == 0;  // 过滤偶数}).map(n -> {System.out.println("Mapping: " + n);return n * 2;       // 每个数字加倍}).forEach(n -> System.out.println("Final Result: " + n));  // 输出结果}
}

输出:

Filtering: 1
Filtering: 2
Mapping: 2
Final Result: 4
Filtering: 3
Filtering: 4
Mapping: 4
Final Result: 8
Filtering: 5
Filtering: 6
Mapping: 6
Final Result: 12
Filtering: 7
Filtering: 8
Mapping: 8
Final Result: 16
Filtering: 9
Filtering: 10
Mapping: 10
Final Result: 20

上面代码中,filtermap 都是懒执行的操作。filtermap 的计算只有在调用终端操作(forEach)时才会开始执行。可以看到,只有经过过滤和映射的元素才会打印出来。

4. 合并模式(Merging / ForkJoin)

并行流实现了合并模式,它通过 ForkJoinPool 将任务拆分成子任务并行执行,然后合并结果。以下是一个简单的并行流的示例:

import java.util.*;
import java.util.stream.*;public class ForkJoinDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用并行流执行计算int sum = numbers.parallelStream().map(n -> {System.out.println("Processing: " + n + " in thread: " + Thread.currentThread().getName());return n;}).reduce(0, Integer::sum);System.out.println("Total Sum: " + sum);}
}

输出(不同的线程名可能会有所不同):

Processing: 7 in thread: main
Processing: 6 in thread: main
Processing: 8 in thread: ForkJoinPool.commonPool-worker-2
Processing: 9 in thread: main
Processing: 10 in thread: main
Processing: 2 in thread: ForkJoinPool.commonPool-worker-2
Processing: 3 in thread: ForkJoinPool.commonPool-worker-1
Processing: 1 in thread: ForkJoinPool.commonPool-worker-2
Processing: 5 in thread: main
Processing: 4 in thread: ForkJoinPool.commonPool-worker-1
Total Sum: 55

在上面代码中,parallelStream() 会将任务分成多个子任务并行执行。每个子任务在不同的线程中处理数据,最终通过 reduce 操作将结果合并(在这个例子中是求和)。

总结:

  • 策略模式:Stream 中的每个操作(如 filter()map())都代表一个策略,可以灵活组合。
  • 装饰者模式:中间操作是装饰者,逐步增强流的功能,操作不会修改原始流。
  • 惰性求值:Stream 的中间操作(如 filter()map())在终端操作(如 forEach())触发时才会执行。
  • 合并模式:并行流通过将任务拆分成多个子任务并行执行,最终合并结果,适合多核处理器的计算密集型任务。

相关文章:

Stream API 的设计融合了多个经典设计模式

Stream API 的设计融合了多个经典设计模式&#xff1a; 1. 策略模式&#xff08;Strategy Pattern&#xff09; 策略模式定义了一个算法的家族&#xff0c;将每个算法封装起来&#xff0c;并使它们可以互换。Stream API 中的每个操作&#xff08;如 filter(), map()&#xff…...

jmeter混合场景测试,设置多业务并发比例(吞吐量控制器)

jmeter混合场景测试&#xff0c;设置多业务并发比例&#xff08;吞吐量控制器&#xff09; 测试目的 为了验证需求提出的性能要求&#xff0c;结合实际可能的高压力场景&#xff0c;较全面的检测系统的性能表现。 测试方法 根据需求调研的业务模型和交易占比&#xff0c;设置不…...

直流有刷电机多环控制(PID闭环死区和积分分离)

直流有刷电机多环控制 提高部分-第8讲 直流有刷电机多环控制实现(1)_哔哩哔哩_bilibili PID模型 外环的输出作为内环的输入,外环是最主要控制的效果,主要控制电机的位置。改变位置可以改变速度,改变速度是受电流控制。 实验环境 【 !】功能简介: 按下KEY1使能电机,按下…...

vue-axios+springboot实现文件流下载

前端vue代码&#xff1a; <template><div class"app-container documentation-container"><div><el-button type"primary" click"downloadFile(test.xlsx)">下载test.xlsx</el-button></div></div> …...

selenium执行js

JS知识 获取元素 document.getElement 移除属性&#xff1a;removeAttribute("xx") 窗口移动&#xff1a;window.scrollTo(0, document.body.scrollHeight)方法 drivier.execute_script(js)场景&#xff1a; 日期选择框&#xff0c;不能输入&#xff0c;只能设置…...

每日算法Day11【左叶子之和、找树左下角的值、路径总和】

404.左叶子之和 算法链接: 404. 左叶子之和 - 力扣&#xff08;LeetCode&#xff09; 类型: 二叉树 难度: 简单 思路&#xff1a;要判断一个节点是否为左叶子节点&#xff0c;只能通过其父节点进行判断。 题解: /*** Definition for a binary tree node.* public class Tr…...

分享一下使用 AI 开发个人工具的迭代过程

分享一下使用 AI 开发个人工具的迭代过程&#xff1a;1. 找 gpt/claude 要一个 super shady coder 的人设 prompt&#xff1b;2. 简单介绍项目背景和基础需求给 gemini&#xff0c;生成最初的细化需求&#xff1b;3. 根据细化需求再次分析&#xff0c;完善边界条件&#xff0c;…...

大型语言模型(LLMs)演化树 Large Language Models

大型语言模型&#xff08;LLMs&#xff09;演化树 Large Language Models flyfish 下面的图来自论文地址 Transformer 模型&#xff08;如 BERT 和 GPT-3&#xff09;已经给自然语言处理&#xff08;NLP&#xff09;领域带来了革命性的变化。这得益于它们具备并行化能力&…...

部分背包问题

本节学习解决部分背包问题,部分背包代表物品可以按照一定比例被分割,而后放入背包内.这是十分经典的用贪心算法解决的问题. 问题描述: 给定一些物品,用matrix表示各个物品的属性,第一项表示物品的质量,第二项表示物品的总价值.现有一背包最大承重为M,试求如何让背包中所装物品…...

教师管理系统

大概功能&#xff1a; 1.显示所有教师 2.按姓名查找教师 3.按工号查找教师 4.增加教师 5.删除教师 6.退出 数据会保存到 txt 文件里面 姓名&#xff1a;必须是中文 手机号码&#xff1a;必须是11位&#xff0c;必须是数字 效果展示&#xff1a; 代码展示&#xff1a; Teache…...

Word论文交叉引用一键上标

Word论文交叉引用一键上标 1.进入Microsoft word使用CtrlH快捷键或单击替换按钮 2.在查找内容中输入[^#] 3.鼠标点击&#xff0c;标签为“替换为&#xff1a;”的文本框&#xff0c;注意光标一定要打在图红色方框圈中的文本框中&#xff01; 4.点击格式选择字体 5.勾选上标…...

集成方案 | Docusign + 蓝凌 EKP,打造一站式合同管理平台,实现无缝协作!

本文将详细介绍 Docusign 与蓝凌 EKP 的集成步骤及其效果&#xff0c;并通过实际应用场景来展示 Docusign 的强大集成能力&#xff0c;以证明 Docusign 集成功能的高效性和实用性。 在当今数字化办公环境中&#xff0c;企业对于提高工作效率和提升用户体验的需求日益迫切。蓝凌…...

Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider

开发语言&#xff1a;Python框架&#xff1a;flaskPython版本&#xff1a;python3.7.7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 管理员登录 管理员功能界面 价格区间界面 用户信息界面 品牌管理 笔记本管理 电脑主机…...

【递归与回溯深度解析:经典题解精讲(下篇)】—— Leetcode

文章目录 有效的数独解数独单词搜索黄金矿工不同的路径||| 有效的数独 递归解法思路 将每个数独的格子视为一个任务&#xff0c;依次检查每个格子是否合法。 如果当前格子中的数字违反了数独规则&#xff08;在行、列或 33 小方块中重复&#xff09;&#xff0c;直接返回 Fals…...

Spring boot处理跨域问题

Spring boot处理跨域问题 方案一方案二推荐解决方案注意 方案一 实现WebMvcConfigurer的addCorsMappings方法 Configuration public class InterceptorConfig implements WebMvcConfigurer {Overridepublic void addCorsMappings(CorsRegistry registry) {registry.addMappin…...

每日小题打卡

目录 幂次方 手机键盘 简单排序 校庆 性感素数 幂次方 题目描述 对任意正整数 N&#xff0c;计算 X^Nmod233333 的值。 输入格式 共一行&#xff0c;两个整数 X 和 N。 输出格式 共一行&#xff0c;一个整数&#xff0c;表示 X^Nmod233333 的值。 数据范围 1≤…...

RockyLinux介绍及初始化

文章目录 一、背景二、下载 RockyLinux9 镜像三、环境初始化四、安装 Docker 环境 一、背景 这里讲一个小故事&#xff1a; 我们都知道Linux 内核是由芬兰计算机科学家林纳斯托瓦兹 (Linus Torvalds) 于 1991 年首次开发的&#xff0c;随后有一个非常重要的公司RetHat成立&am…...

2024年12月青少年软件编程(C语言/C++)等级考试试卷(三级)

2024.12青少年软件编程&#xff08;C语言三级&#xff09;等级考试试卷 1.最近的斐波那契数 题目描述 斐波那契数列 Fn的定义为&#xff1a;对n≥0有Fn2Fn1Fn、初始值为 F00和F11。所谓与给定的整数N最近的斐波那契数是指与N的差之绝对值最小的斐波那契数。 本题就请你为任意给…...

【Leecode】Leecode刷题之路第92天之反转链表II

题目出处 92-反转链表II-题目出处 题目描述 个人解法 思路&#xff1a; todo代码示例&#xff1a;&#xff08;Java&#xff09; todo复杂度分析 todo官方解法 92-反转链表II-官方解法 前言 链表的操作问题&#xff0c;一般而言面试&#xff08;机试&#xff09;的时候不…...

StableAnimator模型的部署:复旦微软提出可实现高质量和高保真的ID一致性人类视频生成

文章目录 一、项目介绍二、项目部署模型的权重下载提取目标图像的关节点图像&#xff08;这个可以先不看先用官方提供的数据集进行生成&#xff09;提取人脸&#xff08;这个也可以先不看&#xff09;进行图片的生成 三、模型部署报错 一、项目介绍 由复旦、微软、虎牙、CMU的…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...