Python数据可视化小项目
英雄联盟S14世界赛选手数据可视化
由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源,因此这个小项目非常简单
项目简介
这是一个基于 PyEcharts 的数据可视化小项目,展示了英雄联盟 S14 世界赛选手的关键数据表现,适合作为数据可视化课程作业或兴趣项目。
项目特点:
- 数据源权威,来源于 Kaggle。
- 涉及多种可视化类型,包括柱状图、箱形图、雷达图等。
- 共包含 14 个可视化图表,分布在 3 个 HTML 页面中,方便浏览与展示。
完整代码:英雄联盟S14世界赛选手数据可视化
数据来源
数据来自 Kaggle 平台的 2024 LoL Championship Player Stats & Swiss Stage。
- 数据涵盖选手的各项核心指标,如 KDA、场均击杀、场均死亡等。
- 细化到每分钟视野分数、野区控制等高级数据。
数据示例
TeamName | PlayerName | Position | Games | … | Penta Kills | Solo Kills | Country | FlashKeybind |
---|---|---|---|---|---|---|---|---|
Top Esports | 369 | Top | 8 | … | 0 | 2 | China | D |
Dplus KIA | aiming | Adc | 9 | … | 0 | 2 | South Korea | F |
MAD Lions KOI | alvaro | Support | 5 | … | 0 | 0 | Spain | D |
… | … | … | … | … | … | … | … | … |
LNG Esports | zika | Top | 8 | … | 0 | 2 | China | D |
效果展示
主要采用PyEcharts来完成数据可视化
数据总览
该模块主要有一个各队伍平均胜率的柱状图和全部选手的国籍分布饼图组成
# 计算各队伍平均胜率,并将其转换为百分数形式(乘以100并保留两位小数)
team_win_rates = df.groupby('TeamName')['Win rate'].mean().reset_index()
team_win_rates['Win rate'] = team_win_rates['Win rate'].apply(lambda x: round(x * 100, 2))
print(team_win_rates)
# 绘制柱状图
bar = Bar(init_opts=opts.InitOpts(width="1100px", height="500px")
)
bar.add_xaxis(team_win_rates['TeamName'].tolist())
bar.add_yaxis("平均胜率", team_win_rates['Win rate'].tolist(), category_gap="60%")
bar.set_global_opts(title_opts=opts.TitleOpts(title="各队伍平均胜率", subtitle=""),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)),yaxis_opts=opts.AxisOpts(name="胜率", min_=0, max_=100),visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=0)
)
bar.render("static/charts/team_win_rates.html")
# 国家分布
# 按照国家进行分组,计算每个国家的选手数量
grouped_data = df.groupby('Country').size()# 将结果转换为 DataFrame,并命名为 'Count'
country_data = grouped_data.reset_index(name='Count')
print(country_data)
country_pie = (Pie(init_opts=opts.InitOpts(theme="macarons")).add("", [list(z) for z in zip(country_data['Country'], country_data['Count'])]).set_global_opts(title_opts=opts.TitleOpts(title=""))
)
country_pie.render("static/charts/country_distribution_chart.html")
主要数据
该模块主要涉及了选手的各方位数据总览情况,能够直观的观察各方面数据突出的选手,其中包括:场均击杀、
场均KDA、场均死亡、场均助攻、辅助视野综合得分、选手平均击杀、选手闪现按键情况
# 场均击杀
sorted_df = df.sort_values(by='Avg kills', ascending=False)
avg_kills = sorted_df[['PlayerName', 'Avg kills']]
avg_kills_top10 = avg_kills[0:10]
print(avg_kills_top10)
# 创建Bar实例,用于构建柱状图
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
# 添加x轴数据,即选手姓名
bar.add_xaxis(avg_kills_top10['PlayerName'].tolist())
# 添加y轴数据,即场均击杀数,并设置系列名称为"场均击杀数"
bar.add_yaxis("场均击杀数", avg_kills_top10['Avg kills'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均击杀榜前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45), # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均击杀数"), # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/avg_kills_top10.html")
# KDA
kda_top10 = df.sort_values(by='KDA', ascending=False)[['PlayerName', 'KDA']][0:10]
print(kda_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
bar.add_xaxis(kda_top10['PlayerName'].tolist())bar.add_yaxis('场均KDA', kda_top10['KDA'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均KDA前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45), # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均KDA"), # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=10, min_=6)
)
bar.render("static/charts/kda_top10.html")
# 场均死亡
deaths_top10 = df.sort_values(by='Avg deaths', ascending=False)[['PlayerName', 'Avg deaths']][0:10]
print(deaths_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons"))
bar.add_xaxis(deaths_top10['PlayerName'].tolist())
bar.add_yaxis('场均死亡', deaths_top10['Avg deaths'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均死亡前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45), # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均死亡"), # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/deaths_top10.html")
# 场均助攻
assists_top10 = df.sort_values(by='Avg assists', ascending=False)[['PlayerName', 'Avg assists']][0:10]
print(assists_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons")
)
bar.add_xaxis(assists_top10['PlayerName'].tolist())bar.add_yaxis('场均助攻', assists_top10['Avg assists'].tolist())# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均助攻前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45), # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均助攻"), # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=13, min_=10)
)
bar.render("static/charts/assists_top10.html")
其中每分钟视野分数(VSPM)、每分钟赢得的野区分数(每分钟赢得的野区分数)、每分钟控制野区分数(Avg WCPM)、每分钟视野控制分数(Avg VWPM)各自的权重为1,可自行更改
# 辅助野区视野排行
df['custom_sort'] = df['VSPM'] * 25 + df['Avg WPM'] * 25 + df['Avg WCPM'] * 25 + df['Avg VWPM'] * 25
support_top_10 = df.sort_values(by='custom_sort', ascending=False)[['PlayerName', 'VSPM', 'Avg WPM', 'Avg WCPM', 'Avg VWPM', 'custom_sort']][0:10]
print(support_top_10)
# 创建堆叠柱状图
bar_stacked = Bar(init_opts=opts.InitOpts(width="1000px", height="400px", theme='macarons')
)
# 添加 X 轴数据(选手名字)
bar_stacked.add_xaxis(support_top_10['PlayerName'].tolist())
# 添加堆叠柱状图的每一项数据
bar_stacked.add_yaxis("每分钟视野分数", support_top_10['VSPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟赢得的野区分数", support_top_10['Avg WPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟控制野区分数", support_top_10['Avg WCPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟视野控制分数", support_top_10['Avg VWPM'].tolist(), stack="stack1")
# 设置全局配置
bar_stacked.set_global_opts(title_opts=opts.TitleOpts(title="辅助野区视野排行"),yaxis_opts=opts.AxisOpts(name=""),xaxis_opts=opts.AxisOpts(name="选手"),legend_opts=opts.LegendOpts(pos_left="right", orient="vertical"), # 设置图例在左侧
)
# 渲染图表到 HTML 文件
bar_stacked.render("static/charts/support_top_10.html")
各位置场均击杀箱形图:
# 准备箱线图数据
data = [df[df['Position'] == pos]['Avg kills'].tolist() for pos in df['Position'].unique()]
print(data)
boxplot = Boxplot(init_opts=opts.InitOpts(width="600px", height="400px")
)
boxplot.add_xaxis(df['Position'].unique().tolist())
boxplot.add_yaxis("平均击杀数", boxplot.prepare_data(data), itemstyle_opts=opts.ItemStyleOpts(color="black"))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="不同位置选手平均击杀数分布"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45) # 此处也是修改为axislabel_opts),yaxis_opts=opts.AxisOpts(name="平均击杀数")
)
boxplot.render("static/charts/avg_kills_distribution.html")
# 闪现数据
flash = df.groupby('FlashKeybind').size()
flash_data = flash.reset_index(name='flash_group')
创建饼图
pie = Pie(init_opts=opts.InitOpts(width="400px", height="400px")
)
# 添加数据,设置标签格式
pie.add("闪现按键使用情况",[list(z) for z in zip(flash_data['FlashKeybind'].tolist(), flash_data['flash_group'].tolist())],radius=["30%", "60%"],label_opts=opts.LabelOpts(formatter="{b}")
)
# 设置标题
pie.set_global_opts(title_opts=opts.TitleOpts(title="闪现按键"))# 渲染到本地文件
pie.render("static/charts/flash.html")
我的主队
由于作者喜欢TheShy选手,所以主队是WBG,但是此次世界赛TheShy选手选择了休息,但是也没有新的主队会,所以主队依然是WBG
共有五个选手的雷达图
六大维度:
- KDA
- KP% (击杀参与率)
- CSPerMin (每分钟补刀数)
- GoldPerMin (每分钟经济)
- DPM (每分钟伤害)
- VSPM (每分钟视野分数)
# 获取选手雷达图的数据
def get_player_render_data(player_name, file_name):player_data = df[df['PlayerName'] == player_name][['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']].iloc[0]print(player_data)# 雷达图的维度attributes = ['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']values = player_data.tolist()# 配置雷达图weradar = Radar(init_opts=opts.InitOpts(width="350px", height="350px"))# 定义雷达图的每个维度radar.add_schema(schema=[opts.RadarIndicatorItem(name='KDA', max_=10),opts.RadarIndicatorItem(name='击杀参与率', max_=1),opts.RadarIndicatorItem(name='每分钟补兵', max_=10),opts.RadarIndicatorItem(name='分钟收入金币', max_=500),opts.RadarIndicatorItem(name='分钟伤害', max_=800),opts.RadarIndicatorItem(name='分钟视野分', max_=5)])# 添加数据系列,并设置图例radar.add(player_name,[values],color="blue")# 设置全局选项radar.set_global_opts(title_opts=opts.TitleOpts(title=player_name),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="right"))radar.render(file_name)
# 我的主队
get_player_render_data('crisp', 'static/charts/crisp_render_data.html')
get_player_render_data('light', 'static/charts/light_render_data.html')
get_player_render_data('xiaohu', 'static/charts/xiaohu_render_data.html')
get_player_render_data('tarzan', 'static/charts/tarzan_render_data.html')
get_player_render_data('breathe', 'static/charts/breathe_render_data.html')
整体效果
整体效果就是将各个图表集中到了一起,加了一些样式,以一个静态网站来展示
完整效果请访问
index.html
页面
相关文章:

Python数据可视化小项目
英雄联盟S14世界赛选手数据可视化 由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源&am…...

Python毕业设计选题:基于python的白酒数据推荐系统_django+hive
开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 用户管理 白酒管理 系统管理 看板展示 系统首页 白酒详情…...

SQL-leetcode-180. 连续出现的数字
180. 连续出现的数字 表:Logs -------------------- | Column Name | Type | -------------------- | id | int | | num | varchar | -------------------- 在 SQL 中,id 是该表的主键。 id 是一个自增列。 找出所有至少连续出现三次的数字。 返回的…...

Unity中如何修改Sprite的渲染网格
首先打开SpriteEditor 选择Custom OutLine,点击Genrate 则在图片边缘会出现边缘线,调整白色小方块可以调整边缘 调整后,Sprite就会按照调整后的网格渲染了。 如何在UI中使用? 只要在UI的Image组件中选择Use Sprite Mesh 即可 结果࿱…...

跟着 8.6k Star 的开源数据库,搞 RAG!
过去 9 年里,HelloGitHub 月刊累计收录了 3000 多个开源项目。然而,随着项目数量的增加,不少用户反馈:“搜索功能不好用,找不到想要的项目!” 这让我意识到,仅仅收录项目是不够的,还…...
每日一题 345. 反转字符串中的元音字母
345. 反转字符串中的元音字母 简单 class Solution { public:string reverseVowels(string s) {int l 0;int r s.size() - 1;unordered_set<char> st {a,A,E,e,i,I,O,o,U,u};while(l < r){while(l<r && !st.count(s[l]) ){l;}while(l<r &&…...
Stream API 的设计融合了多个经典设计模式
Stream API 的设计融合了多个经典设计模式: 1. 策略模式(Strategy Pattern) 策略模式定义了一个算法的家族,将每个算法封装起来,并使它们可以互换。Stream API 中的每个操作(如 filter(), map()ÿ…...

jmeter混合场景测试,设置多业务并发比例(吞吐量控制器)
jmeter混合场景测试,设置多业务并发比例(吞吐量控制器) 测试目的 为了验证需求提出的性能要求,结合实际可能的高压力场景,较全面的检测系统的性能表现。 测试方法 根据需求调研的业务模型和交易占比,设置不…...

直流有刷电机多环控制(PID闭环死区和积分分离)
直流有刷电机多环控制 提高部分-第8讲 直流有刷电机多环控制实现(1)_哔哩哔哩_bilibili PID模型 外环的输出作为内环的输入,外环是最主要控制的效果,主要控制电机的位置。改变位置可以改变速度,改变速度是受电流控制。 实验环境 【 !】功能简介: 按下KEY1使能电机,按下…...
vue-axios+springboot实现文件流下载
前端vue代码: <template><div class"app-container documentation-container"><div><el-button type"primary" click"downloadFile(test.xlsx)">下载test.xlsx</el-button></div></div> …...

selenium执行js
JS知识 获取元素 document.getElement 移除属性:removeAttribute("xx") 窗口移动:window.scrollTo(0, document.body.scrollHeight)方法 drivier.execute_script(js)场景: 日期选择框,不能输入,只能设置…...

每日算法Day11【左叶子之和、找树左下角的值、路径总和】
404.左叶子之和 算法链接: 404. 左叶子之和 - 力扣(LeetCode) 类型: 二叉树 难度: 简单 思路:要判断一个节点是否为左叶子节点,只能通过其父节点进行判断。 题解: /*** Definition for a binary tree node.* public class Tr…...
分享一下使用 AI 开发个人工具的迭代过程
分享一下使用 AI 开发个人工具的迭代过程:1. 找 gpt/claude 要一个 super shady coder 的人设 prompt;2. 简单介绍项目背景和基础需求给 gemini,生成最初的细化需求;3. 根据细化需求再次分析,完善边界条件,…...

大型语言模型(LLMs)演化树 Large Language Models
大型语言模型(LLMs)演化树 Large Language Models flyfish 下面的图来自论文地址 Transformer 模型(如 BERT 和 GPT-3)已经给自然语言处理(NLP)领域带来了革命性的变化。这得益于它们具备并行化能力&…...
部分背包问题
本节学习解决部分背包问题,部分背包代表物品可以按照一定比例被分割,而后放入背包内.这是十分经典的用贪心算法解决的问题. 问题描述: 给定一些物品,用matrix表示各个物品的属性,第一项表示物品的质量,第二项表示物品的总价值.现有一背包最大承重为M,试求如何让背包中所装物品…...

教师管理系统
大概功能: 1.显示所有教师 2.按姓名查找教师 3.按工号查找教师 4.增加教师 5.删除教师 6.退出 数据会保存到 txt 文件里面 姓名:必须是中文 手机号码:必须是11位,必须是数字 效果展示: 代码展示: Teache…...

Word论文交叉引用一键上标
Word论文交叉引用一键上标 1.进入Microsoft word使用CtrlH快捷键或单击替换按钮 2.在查找内容中输入[^#] 3.鼠标点击,标签为“替换为:”的文本框,注意光标一定要打在图红色方框圈中的文本框中! 4.点击格式选择字体 5.勾选上标…...

集成方案 | Docusign + 蓝凌 EKP,打造一站式合同管理平台,实现无缝协作!
本文将详细介绍 Docusign 与蓝凌 EKP 的集成步骤及其效果,并通过实际应用场景来展示 Docusign 的强大集成能力,以证明 Docusign 集成功能的高效性和实用性。 在当今数字化办公环境中,企业对于提高工作效率和提升用户体验的需求日益迫切。蓝凌…...

Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider
开发语言:Python框架:flaskPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 价格区间界面 用户信息界面 品牌管理 笔记本管理 电脑主机…...

【递归与回溯深度解析:经典题解精讲(下篇)】—— Leetcode
文章目录 有效的数独解数独单词搜索黄金矿工不同的路径||| 有效的数独 递归解法思路 将每个数独的格子视为一个任务,依次检查每个格子是否合法。 如果当前格子中的数字违反了数独规则(在行、列或 33 小方块中重复),直接返回 Fals…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...