当前位置: 首页 > news >正文

Python数据可视化小项目

英雄联盟S14世界赛选手数据可视化

由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源,因此这个小项目非常简单


项目简介

这是一个基于 PyEcharts 的数据可视化小项目,展示了英雄联盟 S14 世界赛选手的关键数据表现,适合作为数据可视化课程作业或兴趣项目。

项目特点:

  • 数据源权威,来源于 Kaggle。
  • 涉及多种可视化类型,包括柱状图、箱形图、雷达图等。
  • 共包含 14 个可视化图表,分布在 3 个 HTML 页面中,方便浏览与展示。

完整代码:英雄联盟S14世界赛选手数据可视化

数据来源

数据来自 Kaggle 平台的 2024 LoL Championship Player Stats & Swiss Stage。

  • 数据涵盖选手的各项核心指标,如 KDA、场均击杀、场均死亡等。
  • 细化到每分钟视野分数、野区控制等高级数据。

数据示例

TeamNamePlayerNamePositionGamesPenta KillsSolo KillsCountryFlashKeybind
Top Esports369Top802ChinaD
Dplus KIAaimingAdc902South KoreaF
MAD Lions KOIalvaroSupport500SpainD
LNG EsportszikaTop802ChinaD

效果展示

主要采用PyEcharts来完成数据可视化

数据总览

该模块主要有一个各队伍平均胜率的柱状图和全部选手的国籍分布饼图组成

在这里插入图片描述

# 计算各队伍平均胜率,并将其转换为百分数形式(乘以100并保留两位小数)
team_win_rates = df.groupby('TeamName')['Win rate'].mean().reset_index()
team_win_rates['Win rate'] = team_win_rates['Win rate'].apply(lambda x: round(x * 100, 2))
print(team_win_rates)
# 绘制柱状图
bar = Bar(init_opts=opts.InitOpts(width="1100px", height="500px")
)
bar.add_xaxis(team_win_rates['TeamName'].tolist())
bar.add_yaxis("平均胜率", team_win_rates['Win rate'].tolist(), category_gap="60%")
bar.set_global_opts(title_opts=opts.TitleOpts(title="各队伍平均胜率", subtitle=""),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)),yaxis_opts=opts.AxisOpts(name="胜率", min_=0, max_=100),visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=0)
)
bar.render("static/charts/team_win_rates.html")

在这里插入图片描述

# 国家分布
# 按照国家进行分组,计算每个国家的选手数量
grouped_data = df.groupby('Country').size()# 将结果转换为 DataFrame,并命名为 'Count'
country_data = grouped_data.reset_index(name='Count')
print(country_data)
country_pie = (Pie(init_opts=opts.InitOpts(theme="macarons")).add("", [list(z) for z in zip(country_data['Country'], country_data['Count'])]).set_global_opts(title_opts=opts.TitleOpts(title=""))
)
country_pie.render("static/charts/country_distribution_chart.html")

主要数据

该模块主要涉及了选手的各方位数据总览情况,能够直观的观察各方面数据突出的选手,其中包括:场均击杀、

场均KDA、场均死亡、场均助攻、辅助视野综合得分、选手平均击杀、选手闪现按键情况

在这里插入图片描述

# 场均击杀
sorted_df = df.sort_values(by='Avg kills', ascending=False)
avg_kills = sorted_df[['PlayerName', 'Avg kills']]
avg_kills_top10 = avg_kills[0:10]
print(avg_kills_top10)
# 创建Bar实例,用于构建柱状图
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
# 添加x轴数据,即选手姓名
bar.add_xaxis(avg_kills_top10['PlayerName'].tolist())
# 添加y轴数据,即场均击杀数,并设置系列名称为"场均击杀数"
bar.add_yaxis("场均击杀数", avg_kills_top10['Avg kills'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均击杀榜前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均击杀数"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/avg_kills_top10.html")

在这里插入图片描述

# KDA
kda_top10 = df.sort_values(by='KDA', ascending=False)[['PlayerName', 'KDA']][0:10]
print(kda_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
bar.add_xaxis(kda_top10['PlayerName'].tolist())bar.add_yaxis('场均KDA', kda_top10['KDA'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均KDA前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均KDA"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=10, min_=6)
)
bar.render("static/charts/kda_top10.html")

在这里插入图片描述

# 场均死亡
deaths_top10 = df.sort_values(by='Avg deaths', ascending=False)[['PlayerName', 'Avg deaths']][0:10]
print(deaths_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons"))
bar.add_xaxis(deaths_top10['PlayerName'].tolist())
bar.add_yaxis('场均死亡', deaths_top10['Avg deaths'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均死亡前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均死亡"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/deaths_top10.html")

在这里插入图片描述

# 场均助攻
assists_top10 = df.sort_values(by='Avg assists', ascending=False)[['PlayerName', 'Avg assists']][0:10]
print(assists_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons")
)
bar.add_xaxis(assists_top10['PlayerName'].tolist())bar.add_yaxis('场均助攻', assists_top10['Avg assists'].tolist())# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均助攻前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均助攻"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=13, min_=10)
)
bar.render("static/charts/assists_top10.html")

其中每分钟视野分数(VSPM)、每分钟赢得的野区分数(每分钟赢得的野区分数)、每分钟控制野区分数(Avg WCPM)、每分钟视野控制分数(Avg VWPM)各自的权重为1,可自行更改

在这里插入图片描述

# 辅助野区视野排行
df['custom_sort'] = df['VSPM'] * 25 + df['Avg WPM'] * 25 + df['Avg WCPM'] * 25 + df['Avg VWPM'] * 25
support_top_10 = df.sort_values(by='custom_sort', ascending=False)[['PlayerName', 'VSPM', 'Avg WPM', 'Avg WCPM', 'Avg VWPM', 'custom_sort']][0:10]
print(support_top_10)
# 创建堆叠柱状图
bar_stacked = Bar(init_opts=opts.InitOpts(width="1000px", height="400px", theme='macarons')
)
# 添加 X 轴数据(选手名字)
bar_stacked.add_xaxis(support_top_10['PlayerName'].tolist())
# 添加堆叠柱状图的每一项数据
bar_stacked.add_yaxis("每分钟视野分数", support_top_10['VSPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟赢得的野区分数", support_top_10['Avg WPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟控制野区分数", support_top_10['Avg WCPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟视野控制分数", support_top_10['Avg VWPM'].tolist(), stack="stack1")
# 设置全局配置
bar_stacked.set_global_opts(title_opts=opts.TitleOpts(title="辅助野区视野排行"),yaxis_opts=opts.AxisOpts(name=""),xaxis_opts=opts.AxisOpts(name="选手"),legend_opts=opts.LegendOpts(pos_left="right", orient="vertical"),  # 设置图例在左侧
)
# 渲染图表到 HTML 文件
bar_stacked.render("static/charts/support_top_10.html")

各位置场均击杀箱形图:

在这里插入图片描述

# 准备箱线图数据
data = [df[df['Position'] == pos]['Avg kills'].tolist() for pos in df['Position'].unique()]
print(data)
boxplot = Boxplot(init_opts=opts.InitOpts(width="600px", height="400px")
)
boxplot.add_xaxis(df['Position'].unique().tolist())
boxplot.add_yaxis("平均击杀数", boxplot.prepare_data(data), itemstyle_opts=opts.ItemStyleOpts(color="black"))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="不同位置选手平均击杀数分布"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)  # 此处也是修改为axislabel_opts),yaxis_opts=opts.AxisOpts(name="平均击杀数")
)
boxplot.render("static/charts/avg_kills_distribution.html")

在这里插入图片描述

# 闪现数据
flash = df.groupby('FlashKeybind').size()
flash_data = flash.reset_index(name='flash_group')
创建饼图
pie = Pie(init_opts=opts.InitOpts(width="400px", height="400px")
)
# 添加数据,设置标签格式
pie.add("闪现按键使用情况",[list(z) for z in zip(flash_data['FlashKeybind'].tolist(), flash_data['flash_group'].tolist())],radius=["30%", "60%"],label_opts=opts.LabelOpts(formatter="{b}")
)
# 设置标题
pie.set_global_opts(title_opts=opts.TitleOpts(title="闪现按键"))# 渲染到本地文件
pie.render("static/charts/flash.html")

我的主队

由于作者喜欢TheShy选手,所以主队是WBG,但是此次世界赛TheShy选手选择了休息,但是也没有新的主队会,所以主队依然是WBG

共有五个选手的雷达图

六大维度:

  • KDA
  • KP% (击杀参与率)
  • CSPerMin (每分钟补刀数)
  • GoldPerMin (每分钟经济)
  • DPM (每分钟伤害)
  • VSPM (每分钟视野分数)

在这里插入图片描述

在这里插入图片描述

# 获取选手雷达图的数据
def get_player_render_data(player_name, file_name):player_data = df[df['PlayerName'] == player_name][['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']].iloc[0]print(player_data)# 雷达图的维度attributes = ['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']values = player_data.tolist()# 配置雷达图weradar = Radar(init_opts=opts.InitOpts(width="350px", height="350px"))# 定义雷达图的每个维度radar.add_schema(schema=[opts.RadarIndicatorItem(name='KDA', max_=10),opts.RadarIndicatorItem(name='击杀参与率', max_=1),opts.RadarIndicatorItem(name='每分钟补兵', max_=10),opts.RadarIndicatorItem(name='分钟收入金币', max_=500),opts.RadarIndicatorItem(name='分钟伤害', max_=800),opts.RadarIndicatorItem(name='分钟视野分', max_=5)])# 添加数据系列,并设置图例radar.add(player_name,[values],color="blue")# 设置全局选项radar.set_global_opts(title_opts=opts.TitleOpts(title=player_name),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="right"))radar.render(file_name)
# 我的主队
get_player_render_data('crisp', 'static/charts/crisp_render_data.html')
get_player_render_data('light', 'static/charts/light_render_data.html')
get_player_render_data('xiaohu', 'static/charts/xiaohu_render_data.html')
get_player_render_data('tarzan', 'static/charts/tarzan_render_data.html')
get_player_render_data('breathe', 'static/charts/breathe_render_data.html')

整体效果

整体效果就是将各个图表集中到了一起,加了一些样式,以一个静态网站来展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

完整效果请访问index.html 页面

相关文章:

Python数据可视化小项目

英雄联盟S14世界赛选手数据可视化 由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源&am…...

Python毕业设计选题:基于python的白酒数据推荐系统_django+hive

开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 用户管理 白酒管理 系统管理 看板展示 系统首页 白酒详情…...

SQL-leetcode-180. 连续出现的数字

180. 连续出现的数字 表:Logs -------------------- | Column Name | Type | -------------------- | id | int | | num | varchar | -------------------- 在 SQL 中,id 是该表的主键。 id 是一个自增列。 找出所有至少连续出现三次的数字。 返回的…...

Unity中如何修改Sprite的渲染网格

首先打开SpriteEditor 选择Custom OutLine,点击Genrate 则在图片边缘会出现边缘线,调整白色小方块可以调整边缘 调整后,Sprite就会按照调整后的网格渲染了。 如何在UI中使用? 只要在UI的Image组件中选择Use Sprite Mesh 即可 结果&#xff1…...

跟着 8.6k Star 的开源数据库,搞 RAG!

过去 9 年里,HelloGitHub 月刊累计收录了 3000 多个开源项目。然而,随着项目数量的增加,不少用户反馈:“搜索功能不好用,找不到想要的项目!” 这让我意识到,仅仅收录项目是不够的,还…...

每日一题 345. 反转字符串中的元音字母

345. 反转字符串中的元音字母 简单 class Solution { public:string reverseVowels(string s) {int l 0;int r s.size() - 1;unordered_set<char> st {a,A,E,e,i,I,O,o,U,u};while(l < r){while(l<r && !st.count(s[l]) ){l;}while(l<r &&…...

Stream API 的设计融合了多个经典设计模式

Stream API 的设计融合了多个经典设计模式&#xff1a; 1. 策略模式&#xff08;Strategy Pattern&#xff09; 策略模式定义了一个算法的家族&#xff0c;将每个算法封装起来&#xff0c;并使它们可以互换。Stream API 中的每个操作&#xff08;如 filter(), map()&#xff…...

jmeter混合场景测试,设置多业务并发比例(吞吐量控制器)

jmeter混合场景测试&#xff0c;设置多业务并发比例&#xff08;吞吐量控制器&#xff09; 测试目的 为了验证需求提出的性能要求&#xff0c;结合实际可能的高压力场景&#xff0c;较全面的检测系统的性能表现。 测试方法 根据需求调研的业务模型和交易占比&#xff0c;设置不…...

直流有刷电机多环控制(PID闭环死区和积分分离)

直流有刷电机多环控制 提高部分-第8讲 直流有刷电机多环控制实现(1)_哔哩哔哩_bilibili PID模型 外环的输出作为内环的输入,外环是最主要控制的效果,主要控制电机的位置。改变位置可以改变速度,改变速度是受电流控制。 实验环境 【 !】功能简介: 按下KEY1使能电机,按下…...

vue-axios+springboot实现文件流下载

前端vue代码&#xff1a; <template><div class"app-container documentation-container"><div><el-button type"primary" click"downloadFile(test.xlsx)">下载test.xlsx</el-button></div></div> …...

selenium执行js

JS知识 获取元素 document.getElement 移除属性&#xff1a;removeAttribute("xx") 窗口移动&#xff1a;window.scrollTo(0, document.body.scrollHeight)方法 drivier.execute_script(js)场景&#xff1a; 日期选择框&#xff0c;不能输入&#xff0c;只能设置…...

每日算法Day11【左叶子之和、找树左下角的值、路径总和】

404.左叶子之和 算法链接: 404. 左叶子之和 - 力扣&#xff08;LeetCode&#xff09; 类型: 二叉树 难度: 简单 思路&#xff1a;要判断一个节点是否为左叶子节点&#xff0c;只能通过其父节点进行判断。 题解: /*** Definition for a binary tree node.* public class Tr…...

分享一下使用 AI 开发个人工具的迭代过程

分享一下使用 AI 开发个人工具的迭代过程&#xff1a;1. 找 gpt/claude 要一个 super shady coder 的人设 prompt&#xff1b;2. 简单介绍项目背景和基础需求给 gemini&#xff0c;生成最初的细化需求&#xff1b;3. 根据细化需求再次分析&#xff0c;完善边界条件&#xff0c;…...

大型语言模型(LLMs)演化树 Large Language Models

大型语言模型&#xff08;LLMs&#xff09;演化树 Large Language Models flyfish 下面的图来自论文地址 Transformer 模型&#xff08;如 BERT 和 GPT-3&#xff09;已经给自然语言处理&#xff08;NLP&#xff09;领域带来了革命性的变化。这得益于它们具备并行化能力&…...

部分背包问题

本节学习解决部分背包问题,部分背包代表物品可以按照一定比例被分割,而后放入背包内.这是十分经典的用贪心算法解决的问题. 问题描述: 给定一些物品,用matrix表示各个物品的属性,第一项表示物品的质量,第二项表示物品的总价值.现有一背包最大承重为M,试求如何让背包中所装物品…...

教师管理系统

大概功能&#xff1a; 1.显示所有教师 2.按姓名查找教师 3.按工号查找教师 4.增加教师 5.删除教师 6.退出 数据会保存到 txt 文件里面 姓名&#xff1a;必须是中文 手机号码&#xff1a;必须是11位&#xff0c;必须是数字 效果展示&#xff1a; 代码展示&#xff1a; Teache…...

Word论文交叉引用一键上标

Word论文交叉引用一键上标 1.进入Microsoft word使用CtrlH快捷键或单击替换按钮 2.在查找内容中输入[^#] 3.鼠标点击&#xff0c;标签为“替换为&#xff1a;”的文本框&#xff0c;注意光标一定要打在图红色方框圈中的文本框中&#xff01; 4.点击格式选择字体 5.勾选上标…...

集成方案 | Docusign + 蓝凌 EKP,打造一站式合同管理平台,实现无缝协作!

本文将详细介绍 Docusign 与蓝凌 EKP 的集成步骤及其效果&#xff0c;并通过实际应用场景来展示 Docusign 的强大集成能力&#xff0c;以证明 Docusign 集成功能的高效性和实用性。 在当今数字化办公环境中&#xff0c;企业对于提高工作效率和提升用户体验的需求日益迫切。蓝凌…...

Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider

开发语言&#xff1a;Python框架&#xff1a;flaskPython版本&#xff1a;python3.7.7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 管理员登录 管理员功能界面 价格区间界面 用户信息界面 品牌管理 笔记本管理 电脑主机…...

【递归与回溯深度解析:经典题解精讲(下篇)】—— Leetcode

文章目录 有效的数独解数独单词搜索黄金矿工不同的路径||| 有效的数独 递归解法思路 将每个数独的格子视为一个任务&#xff0c;依次检查每个格子是否合法。 如果当前格子中的数字违反了数独规则&#xff08;在行、列或 33 小方块中重复&#xff09;&#xff0c;直接返回 Fals…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...