当前位置: 首页 > news >正文

【数据分析】贝叶斯定理

文章目录

  • 一、贝叶斯定理的基本形式
  • 二、贝叶斯定理的推导
  • 三、贝叶斯定理的应用
  • 四、贝叶斯定理的优势与挑战

贝叶斯定理(Bayes' Theorem)是概率论中的一个重要公式,它提供了一种根据已有信息更新事件发生概率的方式。贝叶斯定理的核心思想是通过已知的条件概率反推未知的概率,广泛应用于统计学、机器学习、医学诊断、金融分析等领域。

❄️ 通常,事件A在事件B已发生的条件下发生的概率,与事件B在事件A已发生的条件下发生的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。

贝叶斯公式的一个用途,即透过已知的三个概率而推出第四个概率。贝叶斯定理与随机变量的条件概率以及边际概率分布有关。

一、贝叶斯定理的基本形式

贝叶斯定理描述了条件概率的计算方式。设有事件 A A A B B B,贝叶斯定理给出了事件 A A A在事件 B B B发生的情况下发生的条件概率 P ( A ∣ B ) P(A|B) P(AB),其公式为:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中:

  • A和B为随机事件;
  • P ( A ∣ B ) P(A|B) P(AB)表示在事件 B B B发生的情况下,事件 A A A发生的条件概率;
  • P ( B ∣ A ) P(B|A) P(BA)表示在事件 A A A发生的情况下,事件 B B B发生的条件概率;
  • P ( A ) P(A) P(A)表示事件 A A A先验概率,即在没有任何其他信息的情况下,事件 A A A发生的概率;
  • P ( B ) P(B) P(B)表示事件 B B B边际概率,是事件 B B B发生的总概率,不能为 0。

二、贝叶斯定理的推导

贝叶斯定理的推导基于条件概率的定义。根据条件概率的定义:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) , P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B|A) = \frac{P(A \cap B)}{P(A)} P(AB)=P(B)P(AB),P(BA)=P(A)P(AB)
其中, P ( A ∩ B ) {P(A \cap B)} P(AB)表示A、B的联合概率,也记为:P(AB), P(A,B)。
将这两个公式合并,可以得到:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

从而得出了贝叶斯定理的公式。


三、贝叶斯定理的应用

  1. 垃圾邮件分类

    在垃圾邮件分类中,希望通过邮件内容来判断该邮件是否为垃圾邮件。设事件 A A A为“邮件是垃圾邮件”,事件 B B B为“邮件包含特定的关键词”。希望计算在已知邮件包含某些关键词的条件下,邮件是垃圾邮件的概率 P ( A ∣ B ) P(A|B) P(AB)。贝叶斯定理给出了更新概率的方式:
    P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
    通过计算 P ( B ∣ A ) P(B|A) P(BA)(垃圾邮件中出现关键词的概率)、 P ( A ) P(A) P(A)(垃圾邮件的先验概率)和 P ( B ) P(B) P(B)(包含关键词的总概率),可以预测某封邮件是否为垃圾邮件。

  2. 机器学习中的贝叶斯分类器

    在机器学习中,贝叶斯分类器是一种基于贝叶斯定理的分类方法。最著名的贝叶斯分类器是朴素贝叶斯分类器,它假设特征之间条件独立。朴素贝叶斯分类器的目标是通过计算每个类别的后验概率来进行分类。

    对于一个包含 n n n个特征 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \dots, x_n) X=(x1,x2,,xn)的样本,贝叶斯分类器的预测类别 C C C是通过最大化后验概率 P ( C ∣ X ) P(C|X) P(CX)来实现的:
    P ( C ∣ X ) = P ( X ∣ C ) P ( C ) P ( X ) P(C|X) = \frac{P(X|C) P(C)}{P(X)} P(CX)=P(X)P(XC)P(C)

    其中 P ( X ∣ C ) P(X|C) P(XC)是给定类别 C C C下,特征 X X X的条件概率, P ( C ) P(C) P(C)是类别 C C C的先验概率, P ( X ) P(X) P(X)是特征 X X X的边际概率。
    由于计算 P ( X ∣ C ) P(X|C) P(XC)时假设特征之间独立,因此可以简化为:
    P ( X ∣ C ) = ∏ i = 1 n P ( x i ∣ C ) P(X|C) = \prod_{i=1}^{n} P(x_i|C) P(XC)=i=1nP(xiC)

    然后通过最大化 P ( C ∣ X ) P(C|X) P(CX)来进行分类。

四、贝叶斯定理的优势与挑战

优势:

  • 处理不确定性:贝叶斯定理特别适合在存在不确定性时使用。通过更新概率,可以不断修正和优化预测结果。
  • 先验知识的利用:贝叶斯定理能够结合先验知识(先验概率 P ( A ) P(A) P(A)),使得在样本较少的情况下,依然能够得到合理的预测。
  • 灵活性:贝叶斯定理不仅适用于二分类问题,也适用于多分类问题,并且可以扩展到连续变量的情况。

挑战:

  • 先验知识的选择:贝叶斯定理的效果很大程度上依赖于先验概率的选择。若先验知识不准确,可能会导致预测结果的不可靠。
  • 计算复杂度:在高维数据中,计算条件概率可能非常复杂,特别是在特征之间不独立的情况下,计算量会大幅增加。

相关文章:

【数据分析】贝叶斯定理

文章目录 一、贝叶斯定理的基本形式二、贝叶斯定理的推导三、贝叶斯定理的应用四、贝叶斯定理的优势与挑战 贝叶斯定理(Bayes Theorem)是概率论中的一个重要公式,它提供了一种根据已有信息更新事件发生概率的方式。贝叶斯定理的核心思想是通过…...

学AI编程的Prompt工程,marscode

利用marscode做个创意应用 Datawhale-AI活动 首先把自己的创意告诉marscode,marscode会针对你的创意开始写代码。如果在把创意给marscode前有更好的梳理,会有更好的结果。 对于一个新开始的项目,只需要点击apply进行应用 由于ai的效果不稳定…...

python中的与时间相关的模块

python中的与时间相关的模块 1. time 模块2. datetime 模块3. calendar 模块4. timeit 模块5. pytz 模块6. dateutil 模块参考资料 1. time 模块 time 模块提供了时间相关的函数,主要用于测量时间间隔、获取当前时间、格式化时间等 主要功能 获取当前时间&#xff…...

【Python运维】构建基于Python的自动化运维平台:用Flask和Celery

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在现代IT运维中,自动化运维平台扮演着至关重要的角色,它能够显著提高运维效率,减少人为错误,并且增强系统的可维护性。本文将引导读者如…...

Qt 12.28 day3

作业: 1】 思维导图 2】 在登录界面的登录取消按钮进行以下设置: 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&a…...

Java爬虫获取速卖通(AliExpress)商品详情

1. 环境准备 在开始编写爬虫之前,需要准备以下环境和工具: Java开发环境:确保你的计算机上安装了Java开发工具包(JDK)。IDE:选择一个Java集成开发环境,如IntelliJ IDEA、Eclipse等。第三方库&…...

Learning Multi-Scale Photo Exposure Correction

Abstract 用错误的曝光捕捉照片仍然是相机成像的主要错误来源。曝光问题可分为以下两类:(i)曝光过度,即相机曝光时间过长,导致图像区域明亮和褪色;(ii)曝光不足,即曝光时间过短,导致图像区域变暗。曝光不足和曝光过度都会大大降低…...

【Rust自学】7.4. use关键字 Pt.1:use的使用与as关键字

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.4.1. use的作用 use的作用是将路径导入到当前作用域内。而引入的内容仍然是遵守私有性原则,也就是只有公共的部分引入进来才…...

C++ 设计模式:门面模式(Facade Pattern)

链接:C 设计模式 链接:C 设计模式 - 代理模式 链接:C 设计模式 - 中介者 链接:C 设计模式 - 适配器 门面模式(Facade Pattern)是一种结构型设计模式,它为子系统中的一组接口提供一个一致&#…...

从0到100:基于Java的大学选修课选课小程序开发笔记(上)

背景 为学生提供便捷的课程选择方式,并帮助学校进行课程管理和资源调配;主要功能包括:课程展示,自主选课,取消选课,后台录入课程,统计每门课程报名情况,导出数据,用户管…...

【算法题解】B. President‘s Office - Python实现

题目描述 Berland的总统办公室内设有多个办公桌,其中总统和其属下各自拥有独特颜色的办公桌。总统希望统计哪些属下的办公桌紧邻他的办公桌,但不记得确切的数量。 输入描述: 第一行包含三个值 n, m, c,分别是办公室的长度、宽度…...

【Spring Boot 】详解

Spring Boot 详解 一、Spring Boot 概述 (一)产生背景 随着 Java 应用的日益复杂,传统 Spring 框架在项目搭建与配置方面愈发繁琐,大量的 XML 配置、依赖管理等工作耗费开发者诸多精力。为解决这些痛点,Spring Boot …...

Redisson 框架详解

目录 一.为什么要使用分布式锁? 二.Redisson 的基本使用: 1.添加 Redisson 依赖: 2.在 application.yml 配置 Redis: 3. 创建 Redisson 客户端: (1)单节点模式: (…...

正确导入MapStruct并避免与Lombok编译冲突的深入分析

正确导入MapStruct并避免与Lombok编译冲突的深入分析 一、MapStruct与Lombok概述 1.1 MapStruct简介 MapStruct是一个代码生成器,它基于约定优于配置的原则,通过注解处理器在编译时自动生成源代码,实现对象之间的属性映射。MapStruct的优势在于减少样板代码,提高开发效率…...

K8S 黑魔法之如何从 Pod 拿到节点的命令行

搞 K8S 运维的时候,偶尔会遇到一个难题,定位到问题出在某个节点上,而由于权限审批,错误配置等等各种原因,没有办法拿到节点的 SSH 权限,无法进入节点命令行进一步排障。 这个时候,就可以用这个…...

【bluedroid】A2dp Source播放流程源码分析(4)

接上集分析:【bluedroid】A2dp Source播放流程源码分析(3)-CSDN博客 蓝牙和AUDIO之间的接口 蓝牙和audio之间的通信是通过socket,管理socket中的文件是UIPC,UIPC管理两条socket。 A2DP_CTRL_PATH /data/misc/bluedroid/.a2dp_ctrl A2DP_DATA_PATH /data/misc/bluedroid…...

计算机网络 (9)数据链路层

前言 计算机网络中的数据链路层(Data Link Layer)是OSI(开放系统互连)参考模型中的第二层,位于物理层和网络层之间。它在物理层提供的服务基础上,负责在相邻节点之间建立、维护和终止链路,确保数…...

kubernetes学习-集群搭建部署(一)

一、开三台虚拟机进行试验(centos7) 1、初始操作 # 关闭防火墙 systemctl stop firewalld systemctl disable firewalld# 关闭selinux sudo sed -i s/enforcing/disabled/ /etc/selinux/config # 永久 setenforce 0 # 临时# 关闭swap sudo swapoff -a # 临时 s…...

docker commit生成的镜像瘦身

1、清除宿主系统的docker资源 docker system prune -a --volumes 2、清理容器内系统的临时文件和缓存 # 删除包管理器缓存 apt-get clean rm -rf /var/lib/apt/lists/* # 删除日志文件 rm -rf /var/log/* # 删除临时文件 rm -rf /tmp/* 3、安装docker squash工具&#xff0…...

基于Spring Boot的宠物领养系统的设计与实现(代码+数据库+LW)

摘 要 如今社会上各行各业,都在用属于自己专用的软件来进行工作,互联网发展到这个时候,人们已经发现离不开了互联网。互联网的发展,离不开一些新的技术,而新技术的产生往往是为了解决现有问题而产生的。针对于宠物领…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...