当前位置: 首页 > news >正文

opencv图像直方图

【欢迎关注编码小哥,学习更多实用的编程方法和技巧】

1、基本直方图计算

// 灰度图直方图
cv::Mat calculateGrayscaleHistogram(const cv::Mat& image) {cv::Mat histogram;int histSize = 256;  // 灰度级别float range[] = {0, 256};const float* histRange = {range};cv::calcHist(&image,      // 输入图像1,           // 图像数量0,           // 通道索引cv::Mat(),   // 掩膜histogram,   // 输出直方图1,           // 直方图维度&histSize,   // 直方图大小&histRange   // 像素值范围);return histogram;
}// 彩色图直方图
std::vector<cv::Mat> calculateColorHistogram(const cv::Mat& image) {std::vector<cv::Mat> histograms(3);int histSize = 256;float range[] = {0, 256};const float* histRange = {range};// 分离通道std::vector<cv::Mat> channels;cv::split(image, channels);// 计算每个通道直方图for (int i = 0; i < 3; i++) {cv::calcHist(&channels[i],  // 输入通道1,             // 图像数量0,             // 通道索引cv::Mat(),     // 掩膜histograms[i], // 输出直方图1,             // 直方图维度&histSize,     // 直方图大小&histRange     // 像素值范围);}return histograms;
}

 2、直方图可视化

class HistogramVisualizer {
public:// 绘制直方图static cv::Mat drawHistogram(const cv::Mat& histogram, int height = 400) {// 归一化直方图cv::Mat normalizedHist;cv::normalize(histogram, normalizedHist, 0, height, cv::NORM_MINMAX);// 创建绘图画布int width = 512;cv::Mat histImage(height, width, CV_8UC3, cv::Scalar(255, 255, 255));// 绘制直方图int binWidth = cvRound((double)width / histogram.rows);for (int i = 1; i < histogram.rows; i++) {cv::line(histImage, cv::Point(binWidth * (i - 1), height - cvRound(normalizedHist.at<float>(i - 1))),cv::Point(binWidth * i, height - cvRound(normalizedHist.at<float>(i))),cv::Scalar(0, 0, 0), 2);}return histImage;}// 绘制彩色直方图static cv::Mat drawColorHistogram(const std::vector<cv::Mat>& histograms) {int height = 400;int width = 512;cv::Mat histImage(height, width, CV_8UC3, cv::Scalar(255, 255, 255));std::vector<cv::Scalar> colors = {cv::Scalar(255, 0, 0),   // 蓝色cv::Scalar(0, 255, 0),   // 绿色cv::Scalar(0, 0, 255)    // 红色};// 归一化直方图std::vector<cv::Mat> normalizedHists(3);for (int i = 0; i < 3; i++) {cv::normalize(histograms[i], normalizedHists[i], 0, height, cv::NORM_MINMAX);}// 绘制直方图int binWidth = cvRound((double)width / histograms[0].rows);for (int i = 1; i < histograms[0].rows; i++) {for (int channel = 0; channel < 3; channel++) {cv::line(histImage, cv::Point(binWidth * (i - 1), height - cvRound(normalizedHists[channel].at<float>(i - 1))),cv::Point(binWidth * i, height - cvRound(normalizedHists[channel].at<float>(i))),colors[channel], 2);}}return histImage;}
};

3、直方图均衡化 

class HistogramEqualizer {
public:// 灰度图均衡化static cv::Mat equalizeGrayscaleImage(const cv::Mat& image) {cv::Mat equalizedImage;cv::equalizeHist(image, equalizedImage);return equalizedImage;}// 彩色图均衡化static cv::Mat equalizeColorImage(const cv::Mat& image) {// 转换到YUV空间cv::Mat yuvImage;cv::cvtColor(image, yuvImage, cv::COLOR_BGR2YUV);// 分离通道std::vector<cv::Mat> channels;cv::split(yuvImage, channels);// 仅均衡化亮度通道cv::equalizeHist(channels[0], channels[0]);// 合并通道cv::merge(channels, yuvImage);// 转换回BGRcv::Mat equalizedImage;cv::cvtColor(yuvImage, equalizedImage, cv::COLOR_YUV2BGR);return equalizedImage;}// 自适应直方图均衡化(CLAHE)static cv::Mat adaptiveHistogramEqualization(const cv::Mat& image, double clipLimit = 2.0) {cv::Mat yuvImage;cv::cvtColor(image, yuvImage, cv::COLOR_BGR2YUV);std::vector<cv::Mat> channels;cv::split(yuvImage, channels);// 创建CLAHE对象cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit, cv::Size(8, 8));clahe->apply(channels[0], channels[0]);cv::merge(channels, yuvImage);cv::Mat equalizedImage;cv::cvtColor(yuvImage, equalizedImage, cv::COLOR_YUV2BGR);return equalizedImage;}
};

 4、直方图比较

class HistogramComparator {
public:// 直方图比较方法enum CompareMethod {CORRELATION = cv::HISTCMP_CORREL,CHI_SQUARE = cv::HISTCMP_CHISQR,INTERSECTION = cv::HISTCMP_INTERSECT,BHATTACHARYYA = cv::HISTCMP_BHATTACHARYYA};// 比较两个直方图static double compareHistograms(const cv::Mat& hist1, const cv::Mat& hist2, CompareMethod method = CORRELATION) {return cv::compareHist(hist1 , hist2, method);}
};// 使用示例
cv::Mat image1 = cv::imread("image1.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat image2 = cv::imread("image2.jpg", cv::IMREAD_GRAYSCALE);cv::Mat hist1 = calculateGrayscaleHistogram(image1);
cv::Mat hist2 = calculateGrayscaleHistogram(image2);double similarity = HistogramComparator::compareHistograms(hist1, hist2, HistogramComparator::CORRELATION);
std::cout << "Histogram similarity: " << similarity << std::endl; ```cpp
// 重新合并通道
cv::Mat processedImage;
cv::merge(channels, processedImage);
return processedImage;
}// 使用示例
cv::Mat inputImage = cv::imread("input.jpg");
cv::Mat outputImage = processImageChannels(inputImage);// 显示结果
cv::imshow("Processed Image", outputImage);
cv::waitKey(0);
cv::destroyAllWindows();
``` ```cpp
// 重新合并通道
cv::Mat processedImage;
cv::merge(channels, processedImage);
return processedImage;
}// 使用示例
cv::Mat inputImage = cv::imread("input.jpg");
cv::Mat outputImage = processImageChannels(inputImage);// 显示结果
cv::imshow("Processed Image", outputImage);
cv::waitKey(0);
cv::destroyAllWindows();
}

相关文章:

opencv图像直方图

【欢迎关注编码小哥&#xff0c;学习更多实用的编程方法和技巧】 1、基本直方图计算 // 灰度图直方图 cv::Mat calculateGrayscaleHistogram(const cv::Mat& image) {cv::Mat histogram;int histSize 256; // 灰度级别float range[] {0, 256};const float* histRange …...

OpenCV计算机视觉 03 椒盐噪声的添加与常见的平滑处理方式(均值、方框、高斯、中值)

上一篇文章&#xff1a;OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理 目录 添加椒盐噪声 图像平滑常见处理方式 均值滤波 (blur) 方框滤波 (boxFilter) ​高斯滤波 (GaussianBlur) 中值滤波 (medianBlur) 添加椒盐噪声 def add_peppersalt_noise(image, n…...

【嵌入式C语言】内存分布

内存分布 内存分布图内存的属性&#xff1a;只读空间只读空间的特点编程注意事项 栈空间栈的工作原理栈的特点栈溢出与堆的区别 堆空间堆的特点内存分配函数内存泄漏总结 内存分布图 内存的属性&#xff1a; 在C语言中&#xff0c;内存的属性主要取决于它是如何分配的以及它在…...

【brainpan靶场渗透】

文章目录 一、基础信息 二、信息收集 三、反弹shell 四、提权 一、基础信息 Kali IP&#xff1a;192.168.20.146 靶机 IP&#xff1a;192.168.20.155 二、信息收集 似乎开放了9999&#xff0c;10000端口&#xff0c;访问页面没有太多内容&#xff0c;扫描一下目录 dirs…...

Java实现观察者模式

一、前言 观察者模式&#xff0c;又称为发布订阅模式&#xff0c;是一种行为设置模式&#xff0c;允许对象之间建立一对多的依赖关系&#xff0c;这样当一个对象状态改变时&#xff0c;它的所有依赖者&#xff08;观察者&#xff09;都会收到通知并自动更新。 二、具体实现 …...

通过百度api处理交通数据

通过百度api处理交通数据 1、读取excel获取道路数据 //道路名称Data EqualsAndHashCode public class RoadName {ExcelProperty("Name")private String name; }/*** 获取excel中的道路名称*/private static List<String> getRoadName() {// 定义文件路径&…...

探索CSDN博客数据:使用Python爬虫技术

探索CSDN博客数据&#xff1a;使用Python爬虫技术 在数字化的浪潮中&#xff0c;数据的获取与分析变得日益关键。CSDN作为中国领先的IT社区和服务平台&#xff0c;汇聚了海量的技术博客与文章&#xff0c;成为一座蕴藏丰富的数据宝库。本文将引领您穿梭于Python的requests和py…...

b站ip属地评论和主页不一样怎么回事

在浏览B站时&#xff0c;细心的用户可能会发现一个有趣的现象&#xff1a;某些用户的评论IP属地与主页显示的IP属地并不一致。这种差异引发了用户的好奇和猜测&#xff0c;究竟是什么原因导致了这种情况的发生呢&#xff1f;本文将对此进行深入解析&#xff0c;帮助大家揭开这一…...

如何查看服务器内存占用情况?

如何查看服务器的内存占用情况&#xff1f;你知道内存使用情况对服务器性能的重要性吗&#xff1f;内存是服务器运行的核心资源之一&#xff0c;了解内存的占用情况可以帮助你优化系统性能。 要查看服务器的内存占用情况&#xff0c;首先需要确定你使用的是哪种操作系统。不同…...

流架构的读书笔记(2)

流架构的读书笔记&#xff08;2&#xff09; 一、建模工具之一沃德利地图 推测技术的发展,交流和辩论思想的最有力的方法是沃德利地图 沃德利地图的制作步骤 1确定范围和用户需求 2确定满足用户需求所需的组件 3在一条范围从全新到被人们接受的演进轴上评估这些组成 部分的演…...

E6 中的 扩展运算符(Spread) 和 剩余运算符(Rest)

时间&#xff1a;2024.12.29 之前看到 Es6 中的 三点运算符&#xff0c;有如下的几种写法&#xff0c;有时候三点运算符放在左边&#xff0c;有时候三点运算符放在右边&#xff0c;老是混淆。今天记录下&#xff0c;加强理解。 先看一个问题 最近在看 《ECMAScript 6 入门》关于…...

Python的简单爬虫框架

爬虫为网络爬虫&#xff08;又称为网页蜘蛛&#xff0c;网络机器人&#xff0c;在FOAF社区中间&#xff0c;更经常的称为网页追逐者&#xff09;&#xff0c;是一种按照一定的规则&#xff0c;自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、…...

使用 uni-app 开发的微信小程序中,如何在从 B 页面回来时,重新拉取数据?

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的全栈工程师 欢迎分享 / 收藏 / 赞 / 在看…...

Windows API Set:那些“只存在但不被使用“的DLL

API Set 是什么&#xff1f; 想象一下&#xff0c;Windows就像一个大型图书馆&#xff0c;而API Set就是这个图书馆的索引系统。但这个索引系统非常特别&#xff1a;它是直接内置在Windows加载器中的"虚拟目录"。 // 一个典型的API Set映射示例 api-ms-win-core-mem…...

黑神话悟空鼠标光标分享

效果图&#xff1a; 鼠标光标特点 这套鼠标光标的设计灵感来源于《黑神话&#xff1a;悟空》游戏中的角色和元素&#xff0c;具有以下特点&#xff1a; • 主题鲜明&#xff1a;光标设计紧扣游戏主题&#xff0c;采用了游戏中的元素&#xff0c;让玩家在使用电脑时也能感受到…...

编写一个简单的引导加载程序(bootloader)

编写一个简单的引导加载程序&#xff08;bootloader&#xff09;通常用于嵌入式系统或自定义操作系统。这里&#xff0c;我将为你提供一个基于x86架构的简单汇编语言 bootloader 示例。这个 bootloader 将会在启动时打印一条消息到屏幕上。 使用 NASM 汇编器来编写这个 bootlo…...

【Linux基础】进程(上) —— 概念、状态、优先级与环境变量

目录 一、进程的概念 1. 什么是进程 PCB进程控制块的理解 2. 查看进程的方式 ps ajx 指令 getpid系统调用 3. 另外一种查看进程的方式(了解) 4. 进程的常见调用 fork 创建子进程 现象说明 二、进程的状态 1. 操作系统层面的进程状态 ① 运行状态 ② 阻塞状态 ③…...

Rust: enum 和 i32 的区别和互换

在Rust编程语言中&#xff0c;enum&#xff08;枚举&#xff09;和i32是两种不同类型的数据结构&#xff0c;它们各自有不同的用途和特性。 i32 i32是一个32位的有符号整数类型。它用于存储整数值&#xff0c;范围从-2,147,483,648到2,147,483,647。i32是Rust中的基本数据类型…...

2024年终回顾

前言 很久没有更新博客&#xff0c;因为工作内容主要是内场开发&#xff0c;后来有点和互联网脱轨&#xff0c;断断续续上来看一下。这个总结应该也很简单&#xff0c;涉及以下的几个内容进行逐一说明 一、就业问题 这个问题可能很尖锐&#xff0c;从大环境来说&#xff0c;去…...

RGB、HSV颜色模型及MATLAB互换应用实例

一、前言 RGB和HSV模型是数字图像处理中颜色空间中的两种重要表示方式&#xff0c;RGB和HSV都是描述颜色的数学模型&#xff0c;可以用于表示和处理图像中的颜色信息。 RGB模型是一种基于光的颜色模型&#xff0c;由红&#xff08;Red&#xff09;、绿&#xff08;Green&#x…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...