《机器学习》——KNN算法
文章目录
- KNN算法简介
- KNN算法——sklearn
- sklearn是什么?
- sklearn 安装
- sklearn 用法
- KNN算法 ——距离公式
- KNN算法——实例
- 分类问题
- 完整代码——分类问题
- 回归问题
- 完整代码 ——回归问题
KNN算法简介
- 一、KNN介绍
-
全称是k-nearest neighbors,通过寻找k个距离最近的数据,来确定当前数据值的大小或类别。是机器学习中最为简单和经典的一个算法。
-
- 二、KNN算法的基本要素
- K值的选择:K值代表选择与新测试样本距离最近的前K个训练样本数,通常K是不大于20的整数。K值的选择对算法结果有重要影响,需要通过交叉验证等方法来确定最优的K值。
- 距离度量:常用的距离度量方式包括闵可夫斯基距离、欧氏距离、曼哈顿距离、切比雪夫距离、余弦距离等。其中,欧氏距离在KNN算法中最为常用。
- 分类决策规则:一般采用多数投票法,即选择K个最相似数据中出现次数最多的类别作为新数据的分类。
- 三、KNN算法的工作流程
- 准备数据:对数据进行预处理,包括收集、清洗和归一化等步骤,以确保所有特征在计算距离时具有相等的权重。
- 计算距离:计算测试样本点到训练集中每个样本点的距离。
- 排序与选择:根据距离对样本点进行排序,并选择距离最小的K个样本点作为测试样本的邻居。
- 分类决策:根据K个邻居的类别信息,采用多数投票法确定测试样本的类别。
- 四.KNN算法的优缺点
- 优点:
1.简单,易于理解,易于实现,无需训练;
2.适合对稀有事件进行分类;
3.对异常值不敏感。 - 缺点:
1.样本容量比较大时,计算时间很长;
⒉.不均衡样本效果较差;
- 优点:
KNN算法——sklearn
sklearn是什么?
- Sklearn (Scikit-Learn) 是基于 Python 语言的第三方机器学习库。它建立在 NumPy, SciPy, Pandas 和 Matplotlib库 之上,里面的 API 的设计非常好,所有对象的接口简单,很适合新手上路。
sklearn 安装
pip install scikit-learn
# 也可以自行选择版本,注意不同版本可能会有差异,还可以在后面加-i 镜像地址
# 如:
pip install scikit-learn==1.0.2 -i https://pypi.mirrors.ustc.edu.cn/simple/
sklearn 用法
- 使用sklearn官网API:https://scikit-learn.org/,knn算法的介绍 搜索k-nearest neighbors,注意版本1.0和1.2问题。
- sklearn中有两种KNN算法的用法:KNeighborsClassifier(分类问题), KNeighborsRegressor(回归问题),故此要使用KNN算法时首先要判断需求是分类问题还是回归问题。
KNN算法 ——距离公式
- 等距离公式还有很多:距离公式
KNN算法——实例
分类问题
- 导入模块
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# sklearn中的neighbors模块的KNeighborsClassifier方法
- 导入数据
data = np.loadtxt('datingTestSet2.txt')
# 使用numpy中的loadtxt方法读取txt文件,读取后内容为数组
-
提取数据
-
data[:, -1]:这部分是数组的切片操作。data是一个二维数组,: 表示选取所有行,-1 表示选取最后一列。因此,data[:, -1] 获取了data数组中所有行的最后一列的数据。
-
data[:, -1] == 1:这部分将上一步得到的所有最后一列的值与1进行比较,生成一个布尔数组(或类似布尔索引的结构),其中True表示对应位置的值为1,False表示不是1
-
data[data[:, -1] == 1]:最后,这个布尔数组被用作索引来筛选data数组。具体来说,它会选取data中所有最后一列值为1的行。
-
x = data[:,:-1]
# 逗号前后分别代表行和列,可以看出data[:,:-1]取从头到尾的行和从头到倒数第二个的列,且最后一个不取。
y = data[:,-1]
# 取从头到尾的行和最后一列。
- KNN模型——KNeighborsClassifier
- API
class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights=‘uniform’, algorithm=‘auto’, leaf_size=30, p=2, metric=‘minkowski’, metric_params=None, n_jobs=None)
- n_neighbors : k值,邻居的个数,默认为5。【关键参数】
- weights : 权重项,默认uniform方法。
Uniform:所有最近邻样本的权重都一样。【一般使用这一个】
Distance:权重和距离呈反比,距离越近的样本具有更高的权重。【确认样本分布情况,混乱使用这种形式】
Callable:用户自定义权重。 - algorithm :用于计算最近邻的算法。
ball_tree:球树实现
kd_tree:KD树实现, 是一种对n维空间中的实例点进行存储以便对其进行快速搜索的二叉树结构。
brute:暴力实现
auto:自动选择,权衡上述三种算法。【一般按自动即可】 - leaf_size :空值KD树或者球树的参数,停止建子树的叶子节点的阈值。
- p : 距离的计算方式。P=1为曼哈顿距离,p=2为欧式距离。
- metric : 用于树的距离度量
1.曼哈顿距离2.欧式距离3.切比雪夫距离4.闵可夫斯基距离5.带权重闵可夫斯基距离
6 .标准化欧式距离7.马氏距离 - metric_params :用于比较复杂的距离的度量附加参数。
neigh = KNeighborsClassifier(n_neighbors=10,p=2)
# k = 10,使用欧式距离公式计算。
- 训练模型
neigh.fit(x,y)
# 使用KNN模型中的fit方法进行训练。
- 测试模型
print(neigh.predict([[15004,0.08800,0.671355]]))
# neigh.predict():这是 neigh 模型的一个方法,用于对输入数据进行预测。
predict_data = [[9744,11.440364,0.760461],[16191,0.100000,0.605619],[42377,6.519522,1.058602],[27353,11.475155,1.528626]]
print(neigh.predict(predict_data))
# 测试多组数据时
- 测试结果
可以看到第一组数据分到2类别,第二组几个数据分别分到第2、2、1、3类别中。
完整代码——分类问题
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
data = np.loadtxt('datingTestSet2.txt')
x = data[:,:-1]
y = data[:,-1]
neigh = KNeighborsClassifier(n_neighbors=10,p=2)
neigh.fit(x,y) # 训练模型print(neigh.predict([[15004,0.08800,0.671355]]))predict_data = [[9744,11.440364,0.760461],[16191,0.100000,0.605619],[42377,6.519522,1.058602],[27353,11.475155,1.528626]]
print(neigh.predict(predict_data))
回归问题
- 使用数据
- 波士顿房价数据
- 导入模块
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
# 回归问题使用KNeighborsRegressor方法
- 导入数据
data = np.loadtxt('boston.txt')
# 使用numpy中的loadtxt方法读取txt文件,读取后内容为数组
- 提取数据
x = data[:,:-1]
# 逗号前后分别代表行和列,可以看出data[:,:-1]取从头到尾的行和从头到倒数第二个的列,且最后一个不取。
y = data[:,-1]
# 取从头到尾的行和最后一列。
- KNN模型——KNeighborsRegressor
- API
class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, *, weights=‘uniform’, algorithm=‘auto’, leaf_size=30, p=2, metric=‘minkowski’, metric_params=None, n_jobs=None)
- n_neighbors : k值,邻居的个数,默认为5。【关键参数】
- weights : 权重项,默认uniform方法。
Uniform:所有最近邻样本的权重都一样。【一般使用这一个】
Distance:权重和距离呈反比,距离越近的样本具有更高的权重。【确认样本分布情况,混乱使用这种形式】
Callable:用户自定义权重。 - algorithm :用于计算最近邻的算法。
ball_tree:球树实现
kd_tree:KD树实现, 是一种对n维空间中的实例点进行存储以便对其进行快速搜索的二叉树结构。
brute:暴力实现
auto:自动选择,权衡上述三种算法。【一般按自动即可】 - leaf_size :空值KD树或者球树的参数,停止建子树的叶子节点的阈值。
- p : 距离的计算方式。P=1为曼哈顿距离,p=2为欧式距离。
- metric : 用于树的距离度量
1.曼哈顿距离2.欧式距离3.切比雪夫距离4.闵可夫斯基距离5.带权重闵可夫斯基距离
6 .标准化欧式距离7.马氏距离 - metric_params :用于比较复杂的距离的度量附加参数。
neigh = KNeighborsRegressor(n_neighbors=5,p=2)
# k = 5,使用欧式距离公式计算。
neigh2 = KNeighborsRegressor(n_neighbors=7,p=2)
# k = 7,使用欧式距离公式计算。
- 训练模型
neigh.fit(x,y)
# 使用KNN模型中的fit方法进行训练。
neigh2.fit(x,y)
- 测试模型
print(neigh.predict([[2.82838,0.00,18.120,0,0.5320,5.7620,40.32,4.0983,24,666.0,20.21,392.93,10.42]]))
print(neigh2.predict([[2.82838,0.00,18.120,0,0.5320,5.7620,40.32,4.0983,24,666.0,20.21,392.93,10.42]]))
- 测试结果
从结果可以看到根据不同的k值,会产生不同的回归值。
完整代码 ——回归问题
import numpy as np
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressordata = np.loadtxt('boston.txt')
x = data[:,:-1]
y = data[:,-1]
neigh = KNeighborsRegressor(n_neighbors=5,p=2)
neigh.fit(x,y)
print(neigh.predict([[2.82838,0.00,18.120,0,0.5320,5.7620,40.32,4.0983,24,666.0,20.21,392.93,10.42]]))
neigh2 = KNeighborsRegressor(n_neighbors=7,p=2)
neigh2.fit(x,y)
print(neigh2.predict([[2.82838,0.00,18.120,0,0.5320,5.7620,40.32,4.0983,24,666.0,20.21,392.93,10.42]]))
相关文章:

《机器学习》——KNN算法
文章目录 KNN算法简介KNN算法——sklearnsklearn是什么?sklearn 安装sklearn 用法 KNN算法 ——距离公式KNN算法——实例分类问题完整代码——分类问题 回归问题完整代码 ——回归问题 KNN算法简介 一、KNN介绍 全称是k-nearest neighbors,通过寻找k个距…...

GAMES101:现代计算机图形学入门-作业五
作业五 这次作业给了许多脚本,我们现在可以把每个脚本的代码逐行细细分析一下。 main.cpp #include "Scene.hpp" #include "Sphere.hpp" #include "Triangle.hpp" #include "Light.hpp" #include "Renderer.hpp&quo…...

GPU 进阶笔记(二):华为昇腾 910B GPU
大家读完觉得有意义记得关注和点赞!!! 1 术语 1.1 与 NVIDIA 术语对应关系1.2 缩写2 产品与机器 2.1 GPU 产品2.2 训练机器 底座 CPU功耗操作系统2.3 性能3 实探:鲲鹏底座 8*910B GPU 主机 3.1 CPU3.2 网卡和网络3.3 GPU 信息 3.3…...

Spring AOP:this 调用当前类方法无法被拦截
问题复现 假设我们正在开发一个宿舍管理系统,这个模块包含一个负责电费充值的类 ElectricService,它含有一个充电方法 charge(): Service public class ElectricService {public void charge() throws Exception {System.out.println("E…...

K8S-LLM:用自然语言轻松操作 Kubernetes
在 Kubernetes (K8s) 的日常管理中,复杂的命令行操作常常让开发者感到头疼。无论是部署应用、管理资源还是调试问题,都需要记住大量的命令和参数。Kubernetes 作为容器编排的行业标准,其强大的功能伴随着陡峭的学习曲线和复杂的命令行操作。这…...

lua和C API库一些记录
相关头文件解释 lua.h:声明lua提供的基础函数,所有内容都有个前缀lua_; luaxlib.h:声明辅助库提供的函数,所有内容都有个前缀luaL_; lualib.h:声明了打开标准库的函数; 辅助库对…...

SpringSecurity中的过滤器链与自定义过滤器
关于 Spring Security 框架中的过滤器的使用方法,系列文章: 《SpringSecurity中的过滤器链与自定义过滤器》 《SpringSecurity使用过滤器实现图形验证码》 1、Spring Security 中的过滤器链 Spring Security 中的过滤器链(Filter Chain)是一个核心的概念,它定义了一系列过…...

Slate文档编辑器-Decorator装饰器渲染调度
Slate文档编辑器-Decorator装饰器渲染调度 在之前我们聊到了基于文档编辑器的数据结构设计,聊了聊基于slate实现的文档编辑器类型系统,那么当前我们来研究一下slate编辑器中的装饰器实现。装饰器在slate中是非常重要的实现,可以为我们方便地…...

本地Docker部署Flowise并实现远程构建LLM应用程序原型高效开发
文章目录 前言1. Docker安装Flowise2. Ubuntu安装Cpolar3. 配置Flowise公网地址4. 远程访问Flowise5. 固定Cpolar公网地址6. 固定地址访问 前言 相信很多对AI感兴趣的小伙伴都会觉得正在逐渐流行的工作流自动化和AI集成特别酷炫,没错,这些技术像“秘密武…...

多点通信、流式域套接字
一、广播 1.1广播的发送端模型: #include<myhead.h>#define BEN_IP "192.168.191.129" #define BEN_PORT 8888#define PORT 6666int main(int argc, const char *argv[]) {int oldfd socket(AF_INET,SOCK_DGRAM,0);if(oldfd -1){perror("soc…...

vue3使用video-player实现视频播放(可拖动视频窗口、调整大小)
1.安装video-player npm install video.js videojs-player/vue --save在main.js中配置全局引入 // 导入视频播放组件 import VueVideoPlayer from videojs-player/vue import video.js/dist/video-js.cssconst app createApp(App) // 视频播放组件 app.use(VueVideoPlayer)2…...

模块化和面向接口的设计:深入理解和应用
模块化和面向接口的设计:深入理解和应用 在面向对象编程中,模块化 和 面向接口设计 是两种非常重要的编程理念。它们能帮助开发人员构建更加清晰、可维护和易于扩展的系统。接下来,我们将详细解释这两种设计思想,并结合 Python 中…...

《SwiftUI 实现点击按钮播放 MP3 音频》
功能介绍 点击按钮时,应用会播放名为 yinpin.mp3 的音频文件。使用 AVAudioPlayer 来加载和播放音频。 关键点: 按钮触发:点击按钮会调用 playAudio() 播放音频。音频加载:通过 Bundle.main.url(forResource:) 加载音频文件。播…...

微机接口课设——基于Proteus和8086的打地鼠设计(8255、8253、8259)Proteus中Unknown 1-byte opcode / Unknown 2-byte opcode错误
原理图设计 汇编代码 ; I/O 端口地址定义 IOY0 EQU 0600H IOY1 EQU 0640H IOY2 EQU 0680HMY8255_A EQU IOY000H*2 ; 8255 A 口端口地址 MY8255_B EQU IOY001H*2 ; 8255 B 口端口地址 MY8255_C EQU IOY002H*2 ; 8255 C 口端口地址 MY8255_MODE EQU IOY003H*2 ; …...

MySQL如何执行.sql 文件:详细教学指南
在使用MySQL数据库过程中,我们经常需要执行包含SQL语句的.sql文件。这些文件通常用于数据库的备份和恢复或批量执行SQL脚本。本文将详细介绍如何在不同环境下执行MySQL的.sql文件。 前置准备 在开始之前,请确保以下条件已经满足: 已经安装…...

非周期性脑活动的动态重构支持癫痫患者的认知功能:一种神经指纹识别方法
摘要 颞叶癫痫(TLE)的特征是大脑活动模式发生大规模的变化,并且这种变化与患者的认知功能受损密切相关。本研究旨在使用神经指纹方法分析大脑活动的动态重构,以描绘TLE患者的个体特征及其认知功能相关性。本研究收集了68名TLE患者和34名对照组的10min静息…...

ZYNQ初识6(zynq_7010)clock时钟IP核
基于板子的PL端无时钟晶振,需要从PS端借用clock1(50M)晶振 接下去是自定义clock的IP核封装,为后续的simulation可以正常仿真波形,需要注意顶层文件的设置,需要将自定义的IP核对应的.v文件设置为顶层文件&a…...

使用MFC编写一个paddleclas预测软件
目录 写作目的 环境准备 下载编译环境 解压预编译库 准备训练文件 模型文件 图像文件 路径整理 准备预测代码 创建预测应用 新建mfc应用 拷贝文档 配置环境 界面布局 添加回cpp文件 修改函数 报错1解决 报错2未解决 修改infer代码 修改MFCPaddleClasDlg.cp…...

SAP SD BP名称和销售订单描述的对应不起来的问题
问题 VBPA-ADRNR地址 和 KNA1-ADRNR 指向同一个号码 销售订单读取这个地址 改正后恢复正常 原因:推测 应该是创建Y0 电商客户的时候,引起锁和混乱导致的。 具体实际时什么样,不太清楚 写于20241230 浙江台州...

FlastOcc-网络复现-1.环境配置及问题
研究OCC网络 1.RuntimeError: Ninja is required to load C extensions RuntimeError: Ninja is required to load C extensions #32 Ninja is required to load C extensions File “/FlashOCC/projects/mmdet3d_plugin/core/evaluation/ray_metrics.py”, line 12, in dvr …...

Go语言中值接收者和指针接收者的区别?
在 Go 语言中,值接收者和指针接收者是方法定义中的两种接收者类型。它们的主要区别在于方法调用时的行为、接收者是否可以被修改,以及性能上的差异。 值接收者 定义 值接收者的方法接收的是调用对象的一个副本,方法内部对该副本的修改不会影…...

kafka小实站
需要先在前面的文章里面照着下载好kafka,并且启动 先启动zookeeper 项目目录 package kafka; import lombok.extern.slf4j.Slf4j; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.springframework.kafka.annotation.KafkaListener; import…...

基于Python实现车辆检测、机动车检测、识别位置标记、计数
目录 引言背景与应用场景车辆检测的研究意义相关工作车辆检测概述机动车检测方法分类基于传统计算机视觉的检测方法基于深度学习的检测方法技术与方法车辆检测技术概述基于Python的车辆检测方法图像处理与特征提取深度学习方法(如YOLO、SSD、Faster R-CNN等)数据集与标注常用…...

心理学硕士
心理学硕士的主要研究方向包括基础心理学、发展心理学和应用心理学。 基础心理学研究一般的心理现象与规律,如心理的实质及神经机制、感觉与知觉、意识与注意、学习与记忆、思维与语言、情绪与意识、人格等。发展心理学研究人类个体心理发生发展的特点和规律&a…...

python量化分析学习与实践1:API接口篇
业内比较流行的几款API数据接口,有聚宽、TuShare,yfinance,以及pandas的pandas_datareader等。国内的一般都需要用户认证,才能下载数据。国外的yfinance与pandas_datareader等则不需要,但需要科学上网。 聚宽 测试下…...

【GO基础学习】gin的使用
文章目录 模版使用流程参数传递路由分组数据解析和绑定gin中间件 模版使用流程 package mainimport ("net/http""github.com/gin-gonic/gin" )func main() {// 1.创建路由r : gin.Default()// 2.绑定路由规则,执行的函数// gin.Context&#x…...

网卡状态变更,virtio-net检测
实现方案: 现在在amp模式下linux端有个真实的物理网卡eth0,有一个虚拟网卡virtio-net0后端,此时需要一种机制,将真实物理网卡的状态发送rtos的virtio-net0前端。这里使用register_netdevice_notifier机制,每个virtio-n…...

中华人民共和国保守国家秘密法
中华人民共和国保守国家秘密法 (1988年9月5日第七届全国人民代表大会常务委员会第三次会议通过 2010年4月29日第十一届全国人民代表大会常务委员会第十四次会议第一次修订 2024年2月27日第十四届全国人民代表大会常务委员会第八次会议第二次修订) 目…...

ELK日志收集系统部署
1、 ElasticSearch部署 Elastic — 搜索 AI 公司 | Elastic 系统类型:Centos7.4 节点IP:172.16.246.234 软件版本:jdk-8u191-linux-x64.tar.gz、elasticsearch-6.5.4.tar.gz 示例节点:172.16.246.234 1、安装配置jdk8 ES运行依…...

3D线上艺术展:艺术与技术的完美融合
随着数字技术的飞速发展,未来的艺术展览正逐步迈向线上线下融合的新阶段。其中,3D线上展览以其独特的魅力,成为线下展览的延伸与拓展,为艺术爱好者们开辟了全新的观赏途径。 对于艺术家和策展人而言,3D线上展览不仅打…...