Passlib库介绍及使用指南
什么是Passlib?
Passlib是一个强大的Python密码哈希库,它支持多种哈希算法和工具。 Passlib不仅提供了易于使用的API,还集成了多种安全特性,如加盐、密钥派生函数等,广泛应用于用户账户系统、敏感数据保护和多因素认证等场景。
Passlib有什么用?
Passlib的主要作用是安全地存储和验证密码。它通过提供多种密码哈希算法来帮助开发者保护用户密码,防止密码以明文形式存储,从而增强数据安全性。
什么时候用Passlib?
你应该在需要处理用户密码的任何时候使用Passlib,特别是在开发多用户应用程序、用户账户系统或者任何需要密码保护的场景中。
GitHub地址
Passlib的GitHub地址为:https://github.com/glic3rinu/passlib 。
怎么安装Passlib?
Passlib可以通过pip进行安装,以下是安装命令:
pip install passlib
或者,如果你需要特定的算法支持,比如bcrypt,可以使用以下命令:
pip install passlib[bcrypt]
使用案例及讲解
1. 使用bcrypt哈希密码
from passlib.hash import bcrypt
password = 'my_password'
bcrypted = bcrypt.hash(password)
在这个例子中,我们使用Passlib的bcrypt
模块来哈希一个密码,并将哈希值存储在变量bcrypted
中。这个哈希值可以安全地存储在数据库中。
2. 验证密码
from passlib.hash import bcrypt
password = 'my_password'
bcrypted = bcrypt.hash(password)
input_password = 'input_password'
if bcrypt.verify(input_password, bcrypted):
print('Password match!')
else:
print('Password mismatch!')
这里,我们使用bcrypt.verify()
函数来验证用户输入的密码是否与数据库中存储的哈希值匹配。
3. 使用CryptContext管理多种哈希算法
from passlib.context import CryptContext
pwd_context = CryptContext(schemes=["bcrypt", "pbkdf2_sha256"], deprecated="auto")
hashed_password = pwd_context.hash("mysecretpassword")
is_correct = pwd_context.verify("mysecretpassword", hashed_password)
在这个例子中,我们创建了一个CryptContext
对象,它允许我们管理多种哈希算法。我们使用它来哈希密码,并验证密码。
总结
Passlib是一个功能强大且易用的密码哈希库,支持多种安全的哈希算法,能够帮助你轻松处理密码的加密和验证。通过本文的介绍,你可以学会如何使用Passlib来加密密码、验证密码,并在实际项目中确保密码的安全性。
相关文章:
Passlib库介绍及使用指南
什么是Passlib? Passlib是一个强大的Python密码哈希库,它支持多种哈希算法和工具。 Passlib不仅提供了易于使用的API,还集成了多种安全特性,如加盐、密钥派生函数等,广泛应用于用户账户系统、敏感数据保护和多因素认证…...

模型选择+过拟合欠拟合
训练误差和泛化误差 训练误差:模型在训练数据上的误差 泛化误差:模型在新数据上的误差 验证数据集:一个用来评估模型好坏的数据集 例如拿出50%的数据作为训练 测试数据集:只能用一次 K则交叉验证 在没有足够数据时使用 算法…...

绝美的数据处理图-三坐标轴-散点图-堆叠图-数据可视化图
clc clear close all %% 读取数据 load(MyColor.mat) %读取颜色包for iloop 1:25 %提取工作表数据data0(iloop) {readtable(data.xlsx,sheet,iloop)}; end%% 解析数据 countzeros(23,14); for iloop 1:25index(iloop) { cell2mat(table2array(data0{1,iloop}(1,1)))};data(i…...
损失函数-二分类和多分类
二分类和多分类的损失函数 二分类 损失函数 L ( y , y ^ ) − ( y l o g ( y ^ ) ) ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) -(ylog(\hat{y})) (1-y)log(1-\hat{y}) L(y,y^)−(ylog(y^))(1−y)log(1−y^) 其中真实标签表示为y(取值为 0 或 1&#…...

汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型,识别率89.7%
汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型损坏: 前挡风玻璃(damage-front-windscreen ) 损坏的门 (damaged-d…...
从 Elastic 迁移到 Easysearch 指引
从 Elasticsearch 迁移到 Easysearch 需要考虑多个方面,这取决于当前使用的 Elasticsearch 版本、能容忍的停机时间、应用需求等。在此背景下,我们梳理了一下通用的升级指引,方便大家进行迁移工作。 迁移路径 Elasticsearch 版本快照兼容推…...

Yapi RCE 复现和批量编写
一、漏洞复现 首先祭出fofa,搜索语句为 app"yapi",但是为了避开国内,所以使用 app"yapi" && country"SG",SG为新加坡,结果如图 虽然有30页,但是能利用的可能也没几…...
【2024年-9月-21日-开源社区openEuler实践记录】PilotGo:简化运维管理的开源利器
开篇介绍 大家好,我是 fzr123。在运维领域摸爬滚打许久,我发现了PilotGo这个超实用的开源项目,它正悄然改变着运维人员处理日常任务的方式,为复杂的运维管理工作带来了极大的便利与效率提升。 技术亮点 1. 自动化运维任务编排 …...
ubuntu 20.04 国内源安装docker
先更新软件包,安装备要apt软件 # 更新软件包索引 sudo apt-get update# 安装需要的软件包以使apt能够通过HTTPS使用仓库 sudo apt-get install ca-certificates curl gnupg lsb-release使用阿里云源 # 添加阿里云官方GPG密钥 curl -fsSL http://mirrors.aliyun.co…...

比亚迪30亿教育慈善基金正式启动,助推中国科教进步
12月30日,比亚迪在深圳总部举行了30亿教育慈善基金启动仪式,比亚迪股份有限公司董事长兼总裁王传福与来自全国的35所高校代表及28所科技馆、博物馆代表共同启动比亚迪30亿教育慈善基金捐赠,推动中国科教进步。 捐资30亿教育慈善基金…...

【链表】重排链表,看似复杂实则并不简单~
文章目录 143. 重排链表解题思路 143. 重排链表 143. 重排链表 给定一个单链表 L 的头节点 head ,单链表 L 表示为: L0 → L1 → … → Ln - 1 → Ln 请将其重新排列后变为: L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → … 不能…...

yakit-靶场-高级前端加解密与验签实战(for嵌套纯享版)
高级前端加解密与验签实战 一、前端验证签名(验签)表单:HMAC-SHA256 使用hmac-sha256的十六进制key值可以加密 与页面加密后的值相同 热加载: encryptData func(p) { //sha256key值key codec.DecodeHex("313233343132333…...

洛谷 P1328 [NOIP2014 提高组] 生活大爆炸版石头剪刀布
题解: #include<iostream> #include<vector> //定义二维数组,直接标识不同出法相应对应关系 int mark[5][5]{{0,-1,1,1,-1},{1,0,-1,1,-1},{-1,1,0,-1,1},{-1,-1,1,0,1},{1,1,-1,-1,0}}; void JudgeScore(int A,int B,int& countA,int&…...

NLP论文速读(NeurIPS 2024)|BERT作为生成式上下文学习者BERTs are Generative In-Context Learners
论文速读|BERTs are Generative In-Context Learners 论文信息: 简介: 本文探讨了在自然语言处理(NLP)领域中,上下文学习(in-context learning)的能力,这通常与因果语言模型&#x…...

亚马逊云科技 | Amazon Nova:智能技术新势力
在2024年亚马逊云科技re:invent大会上,Amazon Nova 系列自研生成式 AI 多模态模型重磅登场,新一代的AI产品-Amazon Nova,隶属于 Amazon Bedrock,一共发布6款大模型,精准切入不同领域,解锁多元业务可能&…...

Kali 自动化换源脚本编写与使用
1. 背景与需求 在使用 Kali Linux 的过程中,软件源的配置对系统的更新与软件安装速度至关重要。 Kali 的默认官方源提供了安全且最新的软件包,但有时由于网络条件或地理位置的限制,使用官方源可能会出现速度较慢的问题。 为了解决这一问题&a…...

【已解决】PDF文档有密码怎么办(2024新)免费在线工具PDF2Go
强大的解密工具PDF2Go使用指南 一、PDF2Go简介 PDF2Go是由德国QaamGo公司开发的在线PDF工具箱,以其强大的功能和用户友好的界面而闻名。它不仅免费,而且不需要用户注册或安装任何软件,只需打开浏览器即可使用。 二、功能特点 1. 免费且无需…...

华为ensp-BGP联盟
学习新思想,争做新青年,今天学习BGP联盟 实验介绍 一个BGP联盟是一个具有内部层次结构的AS。一个BGP联盟由若干个子AS 组成,子AS也称为成员AS。对于一个BGP联盟,其成员AS内部的各路由器之间需要建立全互联的IBGP邻居关系或使用B…...

ArcGIS中怎么进行水文分析?(思路介绍)
最近有人咨询,ArcGIS中怎么进行水文分析,大致的说一下河网提取的思路哈 解决思路:dem填洼→计算水流方向→计算水流累积矩阵→形成河网 dem填洼 计算水流方向 计算水流累积矩阵 用栅格计算器,设阈值(自己多次尝试&…...

LabVIEW中实现多个Subpanel独立调用同一个VI
在LabVIEW中,如果需要通过多个Subpanel同时调用同一个VI并让这些VI实例独立运行,可以通过以下方法实现: 1. 问题背景 LabVIEW默认的VI是以单实例方式运行的。当将同一个VI加载到多个Subpanel时,会因为共享同一内存空间而导致冲突…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...