损失函数-二分类和多分类
二分类和多分类的损失函数
二分类
-
损失函数
L ( y , y ^ ) = − ( y l o g ( y ^ ) ) + ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) = -(ylog(\hat{y})) + (1-y)log(1-\hat{y}) L(y,y^)=−(ylog(y^))+(1−y)log(1−y^)
其中真实标签表示为y(取值为 0 或 1),预测概率表示为 y ^ \hat{y} y^(取值在 0 到 1 之间) -
代码
import torch
import torch.nn as nncriterion = nn.BCELoss() # 或者使用 nn.BCEWithLogitsLoss() BCEWithLogitsLoss可以直接接收logit输出
# 假设模型的输出 logits
logits = torch.tensor([0.2, 0.8, 0.5, 0.1]) #shape: (4, 1)
predicted_probabilities = torch.sigmoid(logits) #shape: (4, 1)
# 真实标签
labels = torch.tensor([0.0, 1.0, 1.0, 0.0]) #shape: (4, 1)
# 计算损失
loss = criterion(predicted_probabilities, labels)
print("Loss:", loss.item())
- 可视化损失值
对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个正样本来说:
l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=−log(y^)
对于单个负样本来说:
l o s s = − l o g ( 1 − y ^ ) loss = -log(1-\hat{y}) loss=−log(1−y^)
从这个公式我们可以反推模型对正样本预测的概率为:
h i t p o s = e − l o s s hit_{pos} = e^{-loss} hitpos=e−loss
对负样本预测的概率为:
h i t n e g = 1 − e − l o s s hit_{neg} = 1-e^{-loss} hitneg=1−e−loss
这个hit就比较形象了,$hit_{pos}$
越接近1,说明正样本的预测效果效果越好,$hit_{neg}$
越接近0,说明负样本的预测效果效果越好
多分类
- 损失函数
L ( y , y ^ ) = − ∑ c = 1 C y l o g ( y ^ ) L(y,\hat{y}) = -\sum_{c=1}^Cylog(\hat{y}) L(y,y^)=−c=1∑Cylog(y^)
其中真实标签表示为y(取值为 0 或 1,表示是否属于第c类),预测概率表示为$\hat{y}$
(取值在 0 到 1 之间) - 代码
import torch
import torch.nn as nncriterion = nn.CrossEntropyLoss()# 假设模型的输出 logits(未经过 sigmoid)
logits = torch.tensor([[1.0, 2.0], # 类别 0 和 1 的 logits[0.0, 1.0],[0.5, 0.5],[0.0, 0.0]]) # shape:(4,2)# 真实标签,格式为类别索引
# 0 表示第一个类别,1 表示第二个类别
labels = torch.tensor([1, 1, 0, 0]) # shape:(1,4)# 计算损失
loss = criterion(logits, labels)print("Loss:", loss.item())
- 可视化损失值
对于输出的loss值,我们往往不能理解这个loss是好还是坏,我们重看损失函数,发现对于单个样本来说:
l o s s = − l o g ( y ^ ) loss = -log(\hat{y}) loss=−log(y^)
从这个公式我们可以反推模型对当前样本的正确类别预测的概率为:
h i t = e − l o s s hit = e^{-loss} hit=e−loss
这个hit就比较形象了,hit越接近1,说明效果越好
二分类和多分类区别
- 从损失函数的物理含义上来看,二分类的损失函数不仅希望正样本输出概率接近1,并且希望负样本的输出概率接近0;而多分类的损失函数仅仅希望正样本输出概率接近1,对于负样本其实没有约束
- 对于二分类问题:如果你希望模型不仅能找出正样本,而且筛掉副样本,就用二分类损失。如果你仅仅希望找出正样本而不管负样本,多分类的损失也能用。
多分类问题中评价问题
TP(True Positive):真实标签为正类,模型预测为正类的样本数量。
TN(True Negative):真实标签为负类,模型预测为负类的样本数量。
FP(False Positive):真实标签为负类,但模型预测为正类的样本数量。
FN(False Negative):真实标签为正类,但模型预测为负类的样本数量。
-
准确率acc
关心模型预测的能力
a c c = T P + T N T P + F P + F N + T N acc = \frac{TP+TN}{TP+FP+FN+TN} acc=TP+FP+FN+TNTP+TN -
精准率pre
关心模型预测负样本能力
p r e = T P T P + F P pre = \frac{TP}{TP+FP} pre=TP+FPTP -
召回率Recall
关心模型预测正样本的能力
r e c a l l = T P T P + F N recall = \frac{TP}{TP+FN} recall=TP+FNTP
相关文章:
损失函数-二分类和多分类
二分类和多分类的损失函数 二分类 损失函数 L ( y , y ^ ) − ( y l o g ( y ^ ) ) ( 1 − y ) l o g ( 1 − y ^ ) L(y,\hat{y}) -(ylog(\hat{y})) (1-y)log(1-\hat{y}) L(y,y^)−(ylog(y^))(1−y)log(1−y^) 其中真实标签表示为y(取值为 0 或 1&#…...

汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型,识别率89.7%
汽车损坏识别检测数据集,使用yolo,pasical voc xml,coco json格式标注,6696张图片,可识别11种损坏类型损坏: 前挡风玻璃(damage-front-windscreen ) 损坏的门 (damaged-d…...
从 Elastic 迁移到 Easysearch 指引
从 Elasticsearch 迁移到 Easysearch 需要考虑多个方面,这取决于当前使用的 Elasticsearch 版本、能容忍的停机时间、应用需求等。在此背景下,我们梳理了一下通用的升级指引,方便大家进行迁移工作。 迁移路径 Elasticsearch 版本快照兼容推…...

Yapi RCE 复现和批量编写
一、漏洞复现 首先祭出fofa,搜索语句为 app"yapi",但是为了避开国内,所以使用 app"yapi" && country"SG",SG为新加坡,结果如图 虽然有30页,但是能利用的可能也没几…...
【2024年-9月-21日-开源社区openEuler实践记录】PilotGo:简化运维管理的开源利器
开篇介绍 大家好,我是 fzr123。在运维领域摸爬滚打许久,我发现了PilotGo这个超实用的开源项目,它正悄然改变着运维人员处理日常任务的方式,为复杂的运维管理工作带来了极大的便利与效率提升。 技术亮点 1. 自动化运维任务编排 …...
ubuntu 20.04 国内源安装docker
先更新软件包,安装备要apt软件 # 更新软件包索引 sudo apt-get update# 安装需要的软件包以使apt能够通过HTTPS使用仓库 sudo apt-get install ca-certificates curl gnupg lsb-release使用阿里云源 # 添加阿里云官方GPG密钥 curl -fsSL http://mirrors.aliyun.co…...

比亚迪30亿教育慈善基金正式启动,助推中国科教进步
12月30日,比亚迪在深圳总部举行了30亿教育慈善基金启动仪式,比亚迪股份有限公司董事长兼总裁王传福与来自全国的35所高校代表及28所科技馆、博物馆代表共同启动比亚迪30亿教育慈善基金捐赠,推动中国科教进步。 捐资30亿教育慈善基金…...

【链表】重排链表,看似复杂实则并不简单~
文章目录 143. 重排链表解题思路 143. 重排链表 143. 重排链表 给定一个单链表 L 的头节点 head ,单链表 L 表示为: L0 → L1 → … → Ln - 1 → Ln 请将其重新排列后变为: L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → … 不能…...

yakit-靶场-高级前端加解密与验签实战(for嵌套纯享版)
高级前端加解密与验签实战 一、前端验证签名(验签)表单:HMAC-SHA256 使用hmac-sha256的十六进制key值可以加密 与页面加密后的值相同 热加载: encryptData func(p) { //sha256key值key codec.DecodeHex("313233343132333…...

洛谷 P1328 [NOIP2014 提高组] 生活大爆炸版石头剪刀布
题解: #include<iostream> #include<vector> //定义二维数组,直接标识不同出法相应对应关系 int mark[5][5]{{0,-1,1,1,-1},{1,0,-1,1,-1},{-1,1,0,-1,1},{-1,-1,1,0,1},{1,1,-1,-1,0}}; void JudgeScore(int A,int B,int& countA,int&…...

NLP论文速读(NeurIPS 2024)|BERT作为生成式上下文学习者BERTs are Generative In-Context Learners
论文速读|BERTs are Generative In-Context Learners 论文信息: 简介: 本文探讨了在自然语言处理(NLP)领域中,上下文学习(in-context learning)的能力,这通常与因果语言模型&#x…...

亚马逊云科技 | Amazon Nova:智能技术新势力
在2024年亚马逊云科技re:invent大会上,Amazon Nova 系列自研生成式 AI 多模态模型重磅登场,新一代的AI产品-Amazon Nova,隶属于 Amazon Bedrock,一共发布6款大模型,精准切入不同领域,解锁多元业务可能&…...

Kali 自动化换源脚本编写与使用
1. 背景与需求 在使用 Kali Linux 的过程中,软件源的配置对系统的更新与软件安装速度至关重要。 Kali 的默认官方源提供了安全且最新的软件包,但有时由于网络条件或地理位置的限制,使用官方源可能会出现速度较慢的问题。 为了解决这一问题&a…...

【已解决】PDF文档有密码怎么办(2024新)免费在线工具PDF2Go
强大的解密工具PDF2Go使用指南 一、PDF2Go简介 PDF2Go是由德国QaamGo公司开发的在线PDF工具箱,以其强大的功能和用户友好的界面而闻名。它不仅免费,而且不需要用户注册或安装任何软件,只需打开浏览器即可使用。 二、功能特点 1. 免费且无需…...

华为ensp-BGP联盟
学习新思想,争做新青年,今天学习BGP联盟 实验介绍 一个BGP联盟是一个具有内部层次结构的AS。一个BGP联盟由若干个子AS 组成,子AS也称为成员AS。对于一个BGP联盟,其成员AS内部的各路由器之间需要建立全互联的IBGP邻居关系或使用B…...

ArcGIS中怎么进行水文分析?(思路介绍)
最近有人咨询,ArcGIS中怎么进行水文分析,大致的说一下河网提取的思路哈 解决思路:dem填洼→计算水流方向→计算水流累积矩阵→形成河网 dem填洼 计算水流方向 计算水流累积矩阵 用栅格计算器,设阈值(自己多次尝试&…...

LabVIEW中实现多个Subpanel独立调用同一个VI
在LabVIEW中,如果需要通过多个Subpanel同时调用同一个VI并让这些VI实例独立运行,可以通过以下方法实现: 1. 问题背景 LabVIEW默认的VI是以单实例方式运行的。当将同一个VI加载到多个Subpanel时,会因为共享同一内存空间而导致冲突…...
【SpringMVC】Bean 加载控制
在实际开发中,SpringMVC 负责扫描和加载 Controller 层的 Bean 对象,而业务层和数据层等其他模块的 Bean 则由 Spring 框架负责扫描和加载。那么,如何控制 Spring 仅加载除了 Controller 层之外的其他 Bean 呢?为了解决这个问题&a…...
Socket编程中关于服务器端监听端口与新连接端口的深入剖析
Socket编程中关于服务器端监听端口与新连接端口的深入剖析 在Socket编程领域,存在一个容易让初学者感到困惑的问题。尽管很多人在网络上进行了相关探讨,但不少解释要么不够清晰明了,要么太过肤浅,未能深入到问题的核心࿰…...
如何通过HTTP API更新Doc
本文介绍如何通过HTTP API更新Collection中已存在的Doc。 说明 若更新Doc时指定id不存在,则本次更新Doc操作无效 如只更新部分属性fields,其他未更新属性fields默认被置为null 前提条件 已创建Cluster:创建Cluster。 已获得API-KEY&#…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...